Nonlocal time porous medium equation with fractional time derivative

被引:0
|
作者
Jean-Daniel Djida
Juan J. Nieto
Iván Area
机构
[1] Universidade de Santiago de Compostela,Instituto de Matemáticas, Departamento de Estatística, Análise Matemática e Optimización
[2] African Institute for Mathematical Sciences,Departamento de Matemática Aplicada II, E.E. Aeronáutica e do Espazo
[3] AIMS-Cameroon,undefined
[4] Universidade de Vigo,undefined
来源
关键词
Nonlinear fractional diffusion; Regularity; Nonlocal diffusion; Fractional Laplacian; Fractional derivatives; Existence of weak solutions; Energy estimates; 35B65; 26A33; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear nonlocal diffusive evolution equations, governed by a Lévy-type nonlocal operator, fractional time derivative and involving porous medium type nonlinearities. Existence and uniqueness of weak solutions are established using approximating solutions and the theory of maximal monotone operators. Using the De Giorgi–Nash–Moser technique, we prove that the solutions are bounded and Hölder continuous for all positive time.
引用
收藏
页码:273 / 304
页数:31
相关论文
共 50 条
  • [11] Space-Time Fractional Schrödinger Equation With Composite Time Fractional Derivative
    Johan L. A. Dubbeldam
    Zivorad Tomovski
    Trifce Sandev
    Fractional Calculus and Applied Analysis, 2015, 18 : 1179 - 1200
  • [12] Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting
    Plociniczak, Lukasz
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 76 : 66 - 70
  • [13] Optimal Control of Diffusion Equation with Fractional Time Derivative with Nonlocal and Nonsingular Mittag-Leffler Kernel
    Djida, Jean-Daniel
    Mophou, Gisele
    Area, Ivan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (02) : 540 - 557
  • [14] Optimal Control of Diffusion Equation with Fractional Time Derivative with Nonlocal and Nonsingular Mittag-Leffler Kernel
    Jean-Daniel Djida
    Gisèle Mophou
    Iván Area
    Journal of Optimization Theory and Applications, 2019, 182 : 540 - 557
  • [15] On the Nonlocal Problem for the Equation with the Hilfer Fractional Derivative
    Ashurov, R. R.
    Fayziev, Yu. E.
    Tukhtaeva, N. M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (03) : 949 - 960
  • [16] LOWER BOUNDS ESTIMATE FOR THE BLOW-UP TIME OF A NONLINEAR NONLOCAL POROUS MEDIUM EQUATION
    Liu Dengming
    Mu Chunlai
    Xin Qiao
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (03) : 1206 - 1212
  • [17] LOWER BOUNDS ESTIMATE FOR THE BLOW-UP TIME OF A NONLINEAR NONLOCAL POROUS MEDIUM EQUATION
    刘灯明
    穆春来
    辛巧
    Acta Mathematica Scientia, 2012, 32 (03) : 1206 - 1212
  • [18] A fractional porous medium equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1378 - 1409
  • [19] Global Unsolvability of the Burgers Equation with Fractional Time Derivative
    Torebek, B. T.
    DIFFERENTIAL EQUATIONS, 2019, 55 (06) : 867 - 870
  • [20] Global Unsolvability of the Burgers Equation with Fractional Time Derivative
    B. T. Torebek
    Differential Equations, 2019, 55 : 867 - 870