Analysis of Bell Based Euler Polynomials and Their Application

被引:0
|
作者
Khan N. [1 ]
Husain S. [1 ]
机构
[1] Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh
关键词
Bell polynomial; Euler polynomial; Sheffer sequence; Stirling number of second kind; Stirling polynomial;
D O I
10.1007/s40819-021-01127-x
中图分类号
学科分类号
摘要
In the present article, we study Bell based Euler polynomials of order α and investigate some correlation formula, summation formula and derivative formula. Also, we introduce some relations of Stirling numbers of the second kind. Moreover, we derive several important formulae of Bell based Euler polynomials by using umbral calculus. © 2021, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [31] Touchard Polynomials, Partial Bell Polynomials and Polynomials of Binomial Type
    Mihoubi, Miloud
    Maamra, Mohammad Said
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (03)
  • [32] A New Identity for Complete Bell Polynomials Based on a Formula of Ramanujan
    Bouroubi, Sadek
    tani, Nesrine Benyahia
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (03)
  • [33] Bell based Apostol-Bernoulli polynomials and its properties
    Kamarujjama M.
    Daud
    Husain S.
    International Journal of Applied and Computational Mathematics, 2022, 8 (1)
  • [34] Remarks on Bell and higher order Bell polynomials and numbers
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    COGENT MATHEMATICS, 2016, 3
  • [35] Truncated-exponential-based Frobenius-Euler polynomials
    Kumam, Wiyada
    Srivastava, Hari Mohan
    Wani, Shahid Ahmad
    Araci, Serkan
    Kumam, Poom
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [36] The estimation of the zeros of the Bell and r-Bell polynomials
    Mezo, Istvan
    Corcino, Roberto B.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 250 : 727 - 732
  • [37] Quadrature Formulae of Euler-Maclaurin Type Based on Generalized Euler Polynomials of Level m
    Quintana, Yamilet
    Urieles, Alejandro
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2018, 6 (02): : 42 - 63
  • [38] ARITHMETIC PROPERTIES OF BELL POLYNOMIALS
    CARLITZ, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 15 (01) : 33 - &
  • [39] On degenerate Bell numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 435 - 446
  • [40] De Moivre and Bell polynomials
    O'Sullivan, Cormac
    EXPOSITIONES MATHEMATICAE, 2022, 40 (04) : 870 - 893