Analysis of Bell Based Euler Polynomials and Their Application

被引:0
|
作者
Khan N. [1 ]
Husain S. [1 ]
机构
[1] Department of Applied Mathematics, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh
关键词
Bell polynomial; Euler polynomial; Sheffer sequence; Stirling number of second kind; Stirling polynomial;
D O I
10.1007/s40819-021-01127-x
中图分类号
学科分类号
摘要
In the present article, we study Bell based Euler polynomials of order α and investigate some correlation formula, summation formula and derivative formula. Also, we introduce some relations of Stirling numbers of the second kind. Moreover, we derive several important formulae of Bell based Euler polynomials by using umbral calculus. © 2021, The Author(s), under exclusive licence to Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [21] An extension of the Bell polynomials
    Natalini, P
    Ricci, PE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (4-5) : 719 - 725
  • [22] Truncated-exponential-based Frobenius–Euler polynomials
    Wiyada Kumam
    Hari Mohan Srivastava
    Shahid Ahmad Wani
    Serkan Araci
    Poom Kumam
    Advances in Difference Equations, 2019
  • [23] A Note on Hermite-based Truncated Euler Polynomials
    Khan, Waseem A.
    Srivastava, Divesh
    Ali, Rifaqat
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [24] ROOTS OF EULER POLYNOMIALS
    HOWARD, FT
    PACIFIC JOURNAL OF MATHEMATICS, 1976, 64 (01) : 181 - 191
  • [25] TRUNCATED EULER POLYNOMIALS
    Komatsu, Takao
    Pita-Ruiz, Claudio
    MATHEMATICA SLOVACA, 2018, 68 (03) : 527 - 536
  • [26] ON EULER AND BERNOULLI POLYNOMIALS
    BRILLHAR.J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1969, 234 : 45 - &
  • [27] Complete and incomplete Bell polynomials associated with Lah-Bell numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Han-Young
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [28] INVERSION OF BIDIMENSIONAL BELL POLYNOMIALS AND APPLICATION TO DENUMERABILITY OF CONNECTED BINARY RELATIONS
    KREWERAS, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (11): : 577 - &
  • [29] Modified Euler-Frobenius Polynomials With Application to Sampled Data Modelling
    Carrasco, Diego S.
    Goodwin, Graham C.
    Yuz, Juan I.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3972 - 3985
  • [30] Euler pseudoprime polynomials and strong pseudoprime polynomials
    Mauduit, V
    FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (03) : 218 - 243