Remarks on Bell and higher order Bell polynomials and numbers

被引:11
|
作者
Natalini, Pierpaolo [1 ]
Ricci, Paolo Emilio [2 ]
机构
[1] Univ Rome Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[2] Int Telemat Univ UniNettuno, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
来源
COGENT MATHEMATICS | 2016年 / 3卷
关键词
Bell polynomials; higher order Bell polynomials and numbers; differentiation of composite functions; combinatorial analysis; partitions; orthogonal polynomials and special functions;
D O I
10.1080/23311835.2016.1220670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We recover a recurrence relation for representing in an easy form the coefficients A(n,k) of the Bell polynomials, which are known in literature as the partial Bell polynomials. Several applications in the framework of classical calculus are derived, avoiding the use of operational techniques. Furthermore, we generalize this result to the coefficients A(n,k)([2]) of the second-order Bell polynomials, i.e. of the Bell polynomials relevant to nth derivative of a composite function of the type f(g(h(t))). The secondorder Bell polynomials B-n([2]) and the relevant Bell numbers b(n)([2]) are introduced. Further extension of the nth derivative of M-nested functions is also touched on.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multidimensional bell polynomials of higher order
    Bernardini, A
    Natalini, P
    Ricci, PE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (10-12) : 1697 - 1708
  • [2] Congruences for Bell polynomials and Bell numbers
    Junod, A
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2002, 9 (04) : 503 - 509
  • [3] Complete and incomplete Bell polynomials associated with Lah–Bell numbers and polynomials
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Hyunseok Lee
    Han-Young Kim
    Advances in Difference Equations, 2021
  • [4] On degenerate Bell numbers and polynomials
    Dae San Kim
    Taekyun Kim
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 435 - 446
  • [5] On degenerate Bell numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (02) : 435 - 446
  • [6] SOME REMARKS ON THE BELL NUMBERS
    CARLITZ, L
    FIBONACCI QUARTERLY, 1980, 18 (01): : 66 - 73
  • [7] HIGHER ORDER BELL POLYNOMIALS AND THE RELEVANT INTEGER SEQUENCE
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2017, 11 (02) : 327 - 339
  • [8] Complete and incomplete Bell polynomials associated with Lah-Bell numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Lee, Hyunseok
    Kim, Han-Young
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [9] A new approach to Bell and poly-Bell numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry, V
    Kim, Hye Kyung
    Lee, Hyunseok
    AIMS MATHEMATICS, 2022, 7 (03): : 4004 - 4016
  • [10] A Note on Central Bell Numbers and Polynomials
    T. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2020, 27 : 76 - 81