Remarks on Bell and higher order Bell polynomials and numbers

被引:11
|
作者
Natalini, Pierpaolo [1 ]
Ricci, Paolo Emilio [2 ]
机构
[1] Univ Rome Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
[2] Int Telemat Univ UniNettuno, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
来源
COGENT MATHEMATICS | 2016年 / 3卷
关键词
Bell polynomials; higher order Bell polynomials and numbers; differentiation of composite functions; combinatorial analysis; partitions; orthogonal polynomials and special functions;
D O I
10.1080/23311835.2016.1220670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We recover a recurrence relation for representing in an easy form the coefficients A(n,k) of the Bell polynomials, which are known in literature as the partial Bell polynomials. Several applications in the framework of classical calculus are derived, avoiding the use of operational techniques. Furthermore, we generalize this result to the coefficients A(n,k)([2]) of the second-order Bell polynomials, i.e. of the Bell polynomials relevant to nth derivative of a composite function of the type f(g(h(t))). The secondorder Bell polynomials B-n([2]) and the relevant Bell numbers b(n)([2]) are introduced. Further extension of the nth derivative of M-nested functions is also touched on.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] New type degenerate Stirling numbers and Bell polynomials
    Kim, Hye Kyung
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) : 666 - 676
  • [22] Explicit upper bounds for Touchard polynomials and Bell numbers
    A.-M. Acu
    J. A. Adell
    I. Raşa
    Acta Mathematica Hungarica, 2024, 172 : 255 - 263
  • [23] Divisibility properties of the r-Bell numbers and polynomials
    Mezo, Istvan
    Ramirez, Jose L.
    JOURNAL OF NUMBER THEORY, 2017, 177 : 136 - 152
  • [24] Degenerate Poly-Lah-Bell Polynomials and Numbers
    Kim, Taekyun
    Kim, Hye Kyung
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [25] On Stirling and Bell numbers of order 1/2
    Schork, Matthias
    FILOMAT, 2024, 38 (02) : 609 - 619
  • [26] A new set of Sheffer-Bell polynomials and logarithmic numbers
    Bretti, Gabriella
    Natalini, Pierpaolo
    Ricci, Paolo Emilio
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 367 - 379
  • [27] CLOSED FORMULAS FOR SPECIAL BELL POLYNOMIALS BY STIRLING NUMBERS AND ASSOCIATE STIRLING NUMBERS
    Qi, Feng
    Lim, Dongkyu
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2020, 108 (122): : 131 - 136
  • [28] Higher order asymptotic refinements in Bell regressions
    Lemonte, Artur J.
    STAT, 2022, 11 (01):
  • [29] Bell polynomials approach for two higher-order KdV-type equations in fluids
    Wang, Yunhu
    Chen, Yong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 533 - 551
  • [30] On Generalized Bell Polynomials
    Corcino, Roberto B.
    Corcino, Cristina B.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011