Quadrature Formulae of Euler-Maclaurin Type Based on Generalized Euler Polynomials of Level m

被引:0
|
作者
Quintana, Yamilet [1 ]
Urieles, Alejandro [2 ]
机构
[1] Univ Simon Bolivar, Dept Matemat Puras & Aplicadas, Caracas, Venezuela
[2] Univ Atlantico, Programa Matemat, Barranquilla, Atlantico, Colombia
来源
关键词
Euler polynomials; generalized Euler polynomials of level m; Euler-Maclaurin; quadrature formulae; quadrature formula;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article deals with some properties -which are, to the best of our knowledge, new- of the generalized Euler polynomials of level m. These properties include a new recurrence relation satisfied by these polynomials and quadrature formulae of Euler-Maclaurin type based on them. Numerical examples are also given.
引用
收藏
页码:42 / 63
页数:22
相关论文
共 50 条
  • [1] Euler-Maclaurin formulae
    Dedic, L
    Matic, M
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (02): : 247 - 275
  • [2] Optimal quadrature formulas of Euler-Maclaurin type
    Shadimetov, Kh. M.
    Hayotov, A. R.
    Nuraliev, F. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 340 - 355
  • [3] An extension of the Euler-Maclaurin quadrature formula using a parametric type of Bernoulli polynomials
    Masjed-Jamei, Mohammad
    Beyki, M. R.
    Koepf, Wolfram
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 156
  • [4] Corrected Euler-Maclaurin's formulae
    Franjić I.
    Pečarić J.
    Rendiconti del Circolo Matematico di Palermo, 2005, 54 (2) : 259 - 272
  • [5] On the generalized Euler-Maclaurin formula
    Martensen, E
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (12): : 858 - 863
  • [6] A generalized Euler-Maclaurin formula on triangles
    Sayas, FJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 93 (02) : 89 - 93
  • [7] INTERPOLATORY BACKGROUND OF EULER-MACLAURIN QUADRATURE FORMULA
    SCHOENBERG, IJ
    SHARMA, A
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (06) : 1034 - +
  • [8] EQUIVARIANT TORIC GEOMETRY AND EULER-MACLAURIN FORMULAE - AN OVERVIEW
    Cappell, Sylvain E.
    Maxim, Laurentiu G.
    Schuermann, Joerg
    Shaneson, Julius L.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (02): : 105 - 128
  • [9] Residue formulae for vector partitions and Euler-MacLaurin sums
    Szenes, A
    Vergne, M
    ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (1-2) : 295 - 342
  • [10] On Euler-Maclaurin formula
    Dubeau, Francois
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 649 - 660