On the tree structure of the power digraphs modulo n

被引:0
|
作者
Amplify Sawkmie
Madan Mohan Singh
机构
[1] North Eastern Hill University,Department of Mathematics, School of Physical Sciences
[2] North-Eastern Hill University,Department of Basic Sciences & Social Sciences, School of Technology
来源
关键词
congruence; symmetric digraph; fundamental constituent; tree; digraph product; semiregular digraph; 68R10; 05C05; 05C20; 11A07; 11A15;
D O I
暂无
中图分类号
学科分类号
摘要
For any two positive integers n and k ⩾ 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n − 1} and such that there is a directed edge from a vertex a to a vertex b if ak ≡ b (mod n). Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} $$\end{document} be the prime factorization of n. Let P be the set of all primes dividing n and let P1, P2 ⊆ P be such that P1 ∪ P2 = P and P1 ∩ P2 = ∅. A fundamental constituent of G(n, k), denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{{P_2}}^*(n,k)$$\end{document}, is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} $$\end{document} and are relatively prime to all primes q ∈ P1. L. Somer and M. Křižek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.
引用
收藏
页码:923 / 945
页数:22
相关论文
共 50 条
  • [41] Alternation in equational tree automata modulo XOR
    Verma, KN
    FSTTCS 2004: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, 2004, 3328 : 518 - 530
  • [42] Power Efficient Modulo Convolution
    Kambhampati, Satyakiran
    2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 1, 2016, : 481 - 486
  • [43] On the distribution of the power generator modulo a prime power
    Friedlander, JB
    Hansen, JSD
    Shparlinski, IE
    UNUSUAL APPLICATIONS OF NUMBER THEORY, 2004, 64 : 71 - 79
  • [44] ON THE QUADRATIC FORMULA MODULO n
    Wright, Steve
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2007, 7 (01): : 33 - 68
  • [45] Sum sequences modulo n
    Chung, Fan
    Folkman, Jon
    Graham, Ron
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 158 : 290 - 314
  • [46] CONGRUENCE MODULO-N
    BLOOM, DM
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (03): : 304 - 305
  • [47] ARITHMETIC FOR XN MODULO N
    FRANZ, EA
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (08): : 924 - &
  • [48] A note on n! modulo p
    M. Z. Garaev
    J. Hernández
    Monatshefte für Mathematik, 2017, 182 : 23 - 31
  • [49] STRUCTURE OF ZERO-DIVISOR GRAPHS ASSOCIATED TO RING OF INTEGER MODULO n
    Pirzada, S.
    Altaf, A.
    Khan, S.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2023, 11 (01):
  • [50] Normalizer Maps Modulo N
    Gozutok, Nazli Yazici
    MATHEMATICS, 2022, 10 (07)