Sum sequences modulo n

被引:0
|
作者
Chung, Fan [1 ]
Folkman, Jon [1 ]
Graham, Ron [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
关键词
Sequences; Uniform distribution; CYCLIC DIFFERENCE SETS; PERFECT ADDITION SETS;
D O I
10.1016/j.jcta.2018.03.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sum sequence modulo n is a sequence S = (s(1), s(2), . . . , s(d)) of elements in Z/nZ such that every x is an element of Z/nZ can be represented as s(i)+s(j), i < j, in the same number lambda of ways. For example, (0,1, 2, 4) is a sum sequence modulo 6 with lambda = 1. We examine polynomials associated with sum sequences using tools from number theory, combinatorics and Galois theory. In particular, we give a complete characterization of sum sequences and their associated polynomials. We also describe some variations on these ideas and mention several possible generalizations to arbitrary finite groups. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:290 / 314
页数:25
相关论文
共 50 条
  • [1] Sum of digits sequences modulo m
    Cusick, Thomas W.
    Ciungu, Lavinia Corina
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (35) : 4738 - 4741
  • [2] EXPONENTIAL SUM MODULO N
    MATTICS, LE
    CARLITZ, L
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (05): : 545 - &
  • [3] CONDITIONS FOR A ZERO SUM MODULO N
    BOVEY, JD
    ERDOS, P
    NIVEN, I
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (01): : 27 - 29
  • [4] CONDITIONS FOR A ZERO SUM MODULO N
    ERDOS, P
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A59 - A59
  • [5] SUM-FREE SETS MODULO N
    KLOVE, T
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (04): : 368 - 369
  • [6] MODULO-2-SUM DECOMPOSITION OF BINARY SEQUENCES OF FINITE PERIODS
    HWANG, JC
    SHENG, CL
    HSIEH, CC
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1975, 39 (01) : 97 - 104
  • [7] SUM-FREE SETS MODULO-N
    不详
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (10): : 964 - 965
  • [8] ON SEQUENCES (anξ)n≥1 CONVERGING MODULO 1
    Bugeaud, Yann
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (08) : 2609 - 2612
  • [9] A Gcd-Sum Function Over Regular Integers Modulo n
    Toth, Laszlo
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (02)
  • [10] On linear approximation of modulo sum
    Maximov, A
    FAST SOFTWARE ENCRYPTION, 2004, 3017 : 483 - 484