On the tree structure of the power digraphs modulo n

被引:0
|
作者
Amplify Sawkmie
Madan Mohan Singh
机构
[1] North Eastern Hill University,Department of Mathematics, School of Physical Sciences
[2] North-Eastern Hill University,Department of Basic Sciences & Social Sciences, School of Technology
来源
Czechoslovak Mathematical Journal | 2015年 / 65卷
关键词
congruence; symmetric digraph; fundamental constituent; tree; digraph product; semiregular digraph; 68R10; 05C05; 05C20; 11A07; 11A15;
D O I
暂无
中图分类号
学科分类号
摘要
For any two positive integers n and k ⩾ 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n − 1} and such that there is a directed edge from a vertex a to a vertex b if ak ≡ b (mod n). Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} $$\end{document} be the prime factorization of n. Let P be the set of all primes dividing n and let P1, P2 ⊆ P be such that P1 ∪ P2 = P and P1 ∩ P2 = ∅. A fundamental constituent of G(n, k), denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{{P_2}}^*(n,k)$$\end{document}, is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} $$\end{document} and are relatively prime to all primes q ∈ P1. L. Somer and M. Křižek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.
引用
收藏
页码:923 / 945
页数:22
相关论文
共 50 条
  • [21] Directed Tree Connectivity of Symmetric Digraphs and Complete Bipartite Digraphs
    Yu, Junran
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (03)
  • [22] TREE ENUMERATION MODULO A CONSENSUS
    CONSTANTINESCU, M
    SANKOFF, D
    JOURNAL OF CLASSIFICATION, 1986, 3 (02) : 349 - 356
  • [23] THE STRUCTURE OF DIGRAPHS ASSOCIATED WITH THE CONGRUENCE xk = y (mod n)
    Somer, Lawrence
    Krizek, Michal
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (02) : 337 - 358
  • [24] The structure of digraphs associated with the congruence xk ≡ y (mod n)
    Lawrence Somer
    Michal Křížek
    Czechoslovak Mathematical Journal, 2011, 61 : 337 - 358
  • [25] Smooth digraphs modulo primitive positive constructability and cyclic loop conditions
    Bodirsky, Manuel
    Starke, Florian
    Vucaj, Albert
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (05) : 929 - 967
  • [26] DIGRAPHS AND THEIR APPLICATIONS IN FAULT TREE ANALYSIS
    CHOPRA, YC
    AGGARWAL, KK
    MICROELECTRONICS AND RELIABILITY, 1979, 19 (03): : 269 - 273
  • [27] On Symmetries of Power Digraphs
    Husnine, S. M.
    Ahmad, Uzma
    Somer, Lawrence
    UTILITAS MATHEMATICA, 2011, 85 : 257 - 271
  • [28] Designing of area and power efficient modulo 2N multiplier
    Shalini, R. V.
    Sampath, P.
    2014 3RD INTERNATIONAL CONFERENCE ON ECO-FRIENDLY COMPUTING AND COMMUNICATION SYSTEMS (ICECCS 2014), 2014, : 246 - 249
  • [29] Multicast tree structure and the power law
    Adjih, C
    Georgiadis, L
    Jacquet, P
    Szpankowski, W
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1508 - 1521
  • [30] Structure of cubic mapping graphs for the ring of Gaussian integers modulo n
    Yangjiang Wei
    Jizhu Nan
    Gaohua Tang
    Czechoslovak Mathematical Journal, 2012, 62 : 527 - 539