Structure of cubic mapping graphs for the ring of Gaussian integers modulo n

被引:0
|
作者
Yangjiang Wei
Jizhu Nan
Gaohua Tang
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] Guangxi Teachers Education University,School of Mathematical Sciences
来源
关键词
cubic mapping graph; cycle; height; 05C05; 11A07; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let ℤn[i] be the ring of Gaussian integers modulo n. We construct for ℤn[i] a cubic mapping graph Γ(n) whose vertex set is all the elements of ℤn[i] and for which there is a directed edge from a ∈ ℤn[i] to b ∈ ℤn[i] if b = a3. This article investigates in detail the structure of Γ(n). We give suffcient and necessary conditions for the existence of cycles with length t. The number of t-cycles in Γ1(n) is obtained and we also examine when a vertex lies on a t-cycle of Γ2(n), where Γ1(n) is induced by all the units of ℤn[i] while Γ2(n) is induced by all the zero-divisors of ℤn[i]. In addition, formulas on the heights of components and vertices in Γ(n) are presented.
引用
收藏
页码:527 / 539
页数:12
相关论文
共 50 条
  • [1] Structure of cubic mapping graphs for the ring of Gaussian integers modulo n
    Wei, Yangjiang
    Nan, Jizhu
    Tang, Gaohua
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 527 - 539
  • [2] The cubic mapping graph for the ring of Gaussian integers modulo n
    Yangjiang Wei
    Jizhu Nan
    Gaohua Tang
    [J]. Czechoslovak Mathematical Journal, 2011, 61 : 1023 - 1036
  • [3] The cubic mapping graph for the ring of Gaussian integers modulo n
    Wei, Yangjiang
    Nan, Jizhu
    Tang, Gaohua
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (04) : 1023 - 1036
  • [4] On graphs associated to ring of Guassian integers and ring of integers modulo n
    Pirzada, S.
    Bhat, M. Imran
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 75 - 83
  • [5] Automorphism Groups of Some Graphs for the Ring of Gaussian Integers Modulo ps
    Hengbin ZHANG
    Jizhu NAN
    [J]. Journal of Mathematical Research with Applications, 2020, 40 (02) : 111 - 118
  • [6] Some aspects of zero-divisor graphs for the ring of Gaussian integers modulo 2 n
    Sinha, Deepa
    Kaur, Bableen
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 (01): : 69 - 81
  • [7] ZERO DIVISOR GRAPH FOR THE RING OF GAUSSIAN INTEGERS MODULO n
    Abu Osba, Emad
    Al-Addasi, Salah
    Abu Jaradeh, Nafiz
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (10) : 3865 - 3877
  • [8] On the Zero Divisor Graphs of the Ring of Lipschitz Integers Modulo n
    José María Grau
    Celino Miguel
    Antonio M. Oller-Marcén
    [J]. Advances in Applied Clifford Algebras, 2017, 27 : 1191 - 1202
  • [9] On the Zero Divisor Graphs of the Ring of Lipschitz Integers Modulo n
    Maria Grau, Jose
    Miguel, Celino
    Oller-Marcen, Antonio M.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1191 - 1202
  • [10] Some aspects of zero-divisor graphs for the ring of Gaussian integers modulo 2n
    Sinha, Deepa
    Kaur, Bableen
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 69 - 81