Structure of cubic mapping graphs for the ring of Gaussian integers modulo n

被引:0
|
作者
Yangjiang Wei
Jizhu Nan
Gaohua Tang
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] Guangxi Teachers Education University,School of Mathematical Sciences
来源
关键词
cubic mapping graph; cycle; height; 05C05; 11A07; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let ℤn[i] be the ring of Gaussian integers modulo n. We construct for ℤn[i] a cubic mapping graph Γ(n) whose vertex set is all the elements of ℤn[i] and for which there is a directed edge from a ∈ ℤn[i] to b ∈ ℤn[i] if b = a3. This article investigates in detail the structure of Γ(n). We give suffcient and necessary conditions for the existence of cycles with length t. The number of t-cycles in Γ1(n) is obtained and we also examine when a vertex lies on a t-cycle of Γ2(n), where Γ1(n) is induced by all the units of ℤn[i] while Γ2(n) is induced by all the zero-divisors of ℤn[i]. In addition, formulas on the heights of components and vertices in Γ(n) are presented.
引用
收藏
页码:527 / 539
页数:12
相关论文
共 50 条
  • [31] On Laplacian Eigenvalues of the Zero-Divisor Graph Associated to the Ring of Integers Modulo n
    Rather, Bilal A.
    Pirzada, Shariefuddin
    Naikoo, Tariq A.
    Shang, Yilun
    [J]. MATHEMATICS, 2021, 9 (05) : 1 - 17
  • [32] Sum of divisors in a ring of gaussian integers
    Sinyavskii O.V.
    [J]. Ukrainian Mathematical Journal, 2001, 53 (7) : 1156 - 1170
  • [33] Some Remarks on Regular Integers Modulo n
    Apostol, Bradut
    Toth, Laszlo
    [J]. FILOMAT, 2015, 29 (04) : 687 - 701
  • [34] General Linear Group over a Ring of Integers of Modulo k
    Han, Juncheol
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (02): : 255 - 260
  • [35] A cubic ring of integers with the smallest Pythagoras number
    Jakub Krásenský
    [J]. Archiv der Mathematik, 2022, 118 : 39 - 48
  • [36] A cubic ring of integers with the smallest Pythagoras number
    Krasensky, Jakub
    [J]. ARCHIV DER MATHEMATIK, 2022, 118 (01) : 39 - 48
  • [37] EDGE-DETECTION USING A CYCLIC RING OF INTEGERS MODULO
    ADHAMI, RR
    BREWER, VE
    [J]. PROCEEDINGS : THE TWENTY-FIRST SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 1989, : 145 - 147
  • [38] Multi-Channel Modulo Samplers Constructed From Gaussian Integers
    Gong, Yicheng
    Gan, Lu
    Liu, Hongqing
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1828 - 1832
  • [39] Multi-channel modulo samplers constructed from gaussian integers
    Gong, Yicheng
    Gan, Lu
    Liu, Hongqing
    [J]. IEEE Signal Processing Letters, 2021, 28 : 1828 - 1832
  • [40] The Cubic Mapping Graph of the Residue Classes of Integers
    Wei, Yangjiang
    Nan, Jizhu
    Tang, Gaohua
    Su, Huadong
    [J]. ARS COMBINATORIA, 2010, 97 : 101 - 110