On the tree structure of the power digraphs modulo n

被引:0
|
作者
Amplify Sawkmie
Madan Mohan Singh
机构
[1] North Eastern Hill University,Department of Mathematics, School of Physical Sciences
[2] North-Eastern Hill University,Department of Basic Sciences & Social Sciences, School of Technology
来源
关键词
congruence; symmetric digraph; fundamental constituent; tree; digraph product; semiregular digraph; 68R10; 05C05; 05C20; 11A07; 11A15;
D O I
暂无
中图分类号
学科分类号
摘要
For any two positive integers n and k ⩾ 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n − 1} and such that there is a directed edge from a vertex a to a vertex b if ak ≡ b (mod n). Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} $$\end{document} be the prime factorization of n. Let P be the set of all primes dividing n and let P1, P2 ⊆ P be such that P1 ∪ P2 = P and P1 ∩ P2 = ∅. A fundamental constituent of G(n, k), denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{{P_2}}^*(n,k)$$\end{document}, is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} $$\end{document} and are relatively prime to all primes q ∈ P1. L. Somer and M. Křižek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.
引用
收藏
页码:923 / 945
页数:22
相关论文
共 50 条
  • [31] Structure of cubic mapping graphs for the ring of Gaussian integers modulo n
    Wei, Yangjiang
    Nan, Jizhu
    Tang, Gaohua
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 527 - 539
  • [32] Efficient modulo 2N+1 tree multipliers for diminished-1 operands
    Efstathiou, C
    Vergos, HT
    Dimitrakopoulos, G
    Nikolos, D
    ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 200 - 203
  • [33] A blossoming algorithm for tree volumes of composite digraphs
    Guo, VJW
    ADVANCES IN APPLIED MATHEMATICS, 2003, 31 (02) : 321 - 333
  • [34] FIBONACCI(N) MODULO N SEQUENCE
    Zyuz'kov, Valentin Mikhailovich
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2013, (24): : 15 - 23
  • [35] On the Multiplicative Order of a(n) Modulo n
    Chappelon, Jonathan
    JOURNAL OF INTEGER SEQUENCES, 2010, 13 (02)
  • [36] The positional power of nodes in digraphs
    Herings, PJJ
    van der Laan, G
    Talman, D
    SOCIAL CHOICE AND WELFARE, 2005, 24 (03) : 439 - 454
  • [37] THE POWER DIGRAPHS OF SAFE PRIMES
    Ahmad, U.
    Husnine, S. M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (03) : 749 - 759
  • [38] De Bruijn and Kautz digraphs of a rooted tree
    Ruiz, JL
    Mora, M
    DISCRETE MATHEMATICS, 2005, 293 (1-3) : 219 - 236
  • [39] THE POWER DIGRAPHS OF FINITE GROUPS
    Ahmad, Uzma
    Syed, Husnine
    UTILITAS MATHEMATICA, 2018, 106 : 319 - 337
  • [40] The positional power of nodes in digraphs
    P. Jean-Jacques Herings
    Gerard van der Laan
    Dolf Talman
    Social Choice and Welfare, 2005, 24 : 439 - 454