On the tree structure of the power digraphs modulo n

被引:0
|
作者
Amplify Sawkmie
Madan Mohan Singh
机构
[1] North Eastern Hill University,Department of Mathematics, School of Physical Sciences
[2] North-Eastern Hill University,Department of Basic Sciences & Social Sciences, School of Technology
来源
关键词
congruence; symmetric digraph; fundamental constituent; tree; digraph product; semiregular digraph; 68R10; 05C05; 05C20; 11A07; 11A15;
D O I
暂无
中图分类号
学科分类号
摘要
For any two positive integers n and k ⩾ 2, let G(n, k) be a digraph whose set of vertices is {0, 1, …, n − 1} and such that there is a directed edge from a vertex a to a vertex b if ak ≡ b (mod n). Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = \prod\nolimits_{i = 1}^r {p_i^{{e_i}}} $$\end{document} be the prime factorization of n. Let P be the set of all primes dividing n and let P1, P2 ⊆ P be such that P1 ∪ P2 = P and P1 ∩ P2 = ∅. A fundamental constituent of G(n, k), denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{{P_2}}^*(n,k)$$\end{document}, is a subdigraph of G(n, k) induced on the set of vertices which are multiples of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod\nolimits_{{p_i} \in {P_2}} {{p_i}} $$\end{document} and are relatively prime to all primes q ∈ P1. L. Somer and M. Křižek proved that the trees attached to all cycle vertices in the same fundamental constituent of G(n, k) are isomorphic. In this paper, we characterize all digraphs G(n, k) such that the trees attached to all cycle vertices in different fundamental constituents of G(n, k) are isomorphic. We also provide a necessary and sufficient condition on G(n, k) such that the trees attached to all cycle vertices in G(n, k) are isomorphic.
引用
收藏
页码:923 / 945
页数:22
相关论文
共 50 条
  • [1] On the tree structure of the power digraphs modulo n
    Sawkmie, Amplify
    Singh, Madan Mohan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 923 - 945
  • [2] Power digraphs modulo n
    Wilson, B
    FIBONACCI QUARTERLY, 1998, 36 (03): : 229 - 239
  • [3] On the heights of power digraphs modulo n
    Ahmad, Uzma
    Syed, Husnine
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 541 - 556
  • [4] Characterization of power digraphs modulo n
    Ahmad, Uzma
    Husnine, Syed
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (03): : 359 - 367
  • [5] On the heights of power digraphs modulo n
    Uzma Ahmad
    Husnine Syed
    Czechoslovak Mathematical Journal, 2012, 62 : 541 - 556
  • [6] On the uniqueness of the factorization of power digraphs modulo n
    Sawkmie, Amplify
    Singh, Madan Mohan
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2018, 140 : 185 - 219
  • [7] On the symmetric digraphs from powers modulo n
    Deng, Guixin
    Yuan, Pingzhi
    DISCRETE MATHEMATICS, 2012, 312 (04) : 720 - 728
  • [8] POWER DIGRAPHS MODULO n ARE SYMMETRIC OF ORDER M IF AND ONLY IF M IS SQUARE FREE
    Somer, Lawrence
    Krizek, Michal
    FIBONACCI QUARTERLY, 2012, 50 (03): : 196 - 206
  • [9] ON DIGRAPHS WITH A ROOTED TREE STRUCTURE.
    Szwarcfiter, Jayme L.
    Networks, 1985, 15 (01) : 49 - 57
  • [10] Distinct sums modulo n and tree embeddings
    Kezdy, AE
    Snevily, HS
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (01): : 35 - 42