On the uniqueness of the factorization of power digraphs modulo n

被引:0
|
作者
Sawkmie, Amplify [1 ]
Singh, Madan Mohan [2 ]
机构
[1] North Eastern Hill Univ, Dept Math, Shillong 793022, Meghalaya, India
[2] North Eastern Hill Univ, Dept Basic Sci & Social Sci, Shillong 793022, Meghalaya, India
关键词
Power digraph; direct product; uniqueness of factorization; Chinese remainder theorem; CONGRUENCE X(K); SYMMETRIC DIGRAPHS; FIELDS; GRAPHS;
D O I
10.4171/RSMUP/8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For each pair of integers n = Pi i=1(r) P-i(ei) and k >= 2, a digraph G(n , k) is one with vertex set {0, 1, . . . , n - 1} and for which there exists a directed edge from x to y if x(k) y (mod n). Using the Chinese Remainder Theorem, the digraph G(n , k) can be written as a direct product of digraphs G(P-i(ei), k) for all i such that 1 <= i <= r. A fundamental constituent G(P)* (n, k), where P subset of Q = {P-1, p(2), . . . , p(r)}, is a subdigraph of G(n, k) induced on the set of vertices which are multiples of Pi(pi) (is an element of P) p(i) and are relatively prime to all primes p(j) is an element of Q \ P. In this paper, we investigate the uniqueness of the factorization of trees attached to cycle vertices of the type 0, 1, and (1, 0), and in general, the uniqueness of G(n, k). Moreover, we provide a necessary and sufficient condition for the isomorphism of the fundamental constituents G(P)* (n, k(1)) and G(P)* (n, k(2)) of G(n,k(1)) and G(n, k(2)) respectively for k(1) not equal k2.
引用
收藏
页码:185 / 219
页数:35
相关论文
共 50 条
  • [1] Power digraphs modulo n
    Wilson, B
    [J]. FIBONACCI QUARTERLY, 1998, 36 (03): : 229 - 239
  • [2] On the heights of power digraphs modulo n
    Ahmad, Uzma
    Syed, Husnine
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 541 - 556
  • [3] Characterization of power digraphs modulo n
    Ahmad, Uzma
    Husnine, Syed
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2011, 52 (03): : 359 - 367
  • [4] On the heights of power digraphs modulo n
    Uzma Ahmad
    Husnine Syed
    [J]. Czechoslovak Mathematical Journal, 2012, 62 : 541 - 556
  • [5] On the tree structure of the power digraphs modulo n
    Sawkmie, Amplify
    Singh, Madan Mohan
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 923 - 945
  • [6] On the tree structure of the power digraphs modulo n
    Amplify Sawkmie
    Madan Mohan Singh
    [J]. Czechoslovak Mathematical Journal, 2015, 65 : 923 - 945
  • [7] On the symmetric digraphs from powers modulo n
    Deng, Guixin
    Yuan, Pingzhi
    [J]. DISCRETE MATHEMATICS, 2012, 312 (04) : 720 - 728
  • [8] FACTORIZATION OF POLYNOMIALS MODULO-N
    GILMER, R
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (04): : 521 - 523
  • [9] UNIQUE FACTORIZATION IN INTEGERS MODULO N
    BILLIS, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (05): : 527 - &
  • [10] POWER DIGRAPHS MODULO n ARE SYMMETRIC OF ORDER M IF AND ONLY IF M IS SQUARE FREE
    Somer, Lawrence
    Krizek, Michal
    [J]. FIBONACCI QUARTERLY, 2012, 50 (03): : 196 - 206