Flow in Random Porous Media

被引:0
|
作者
Joseph B. Keller
机构
[1] Stanford University,Departments of Mathematics and Mechanical Engineering
来源
Transport in Porous Media | 2001年 / 43卷
关键词
Randommedia; effective conductivity; effective permeability; hydraulic conductivity; modified Darcy law; nonlocal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
Flow in a porous medium with a random hydraulic conductivity tensor K(x) is analyzed when the mean conductivity tensor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline K$$ \end{document}(x) is a non-constant function of position x. The results are a non-local expression for the mean flux vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline q$$ \end{document}(x) in terms of the gradient of the mean hydraulic head \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), an integrodifferential equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), and expressions for the two point covariance functions of q(x) and ϕ(x). When K(x) is a Gaussian random function, the joint probability distribution of the functions q(x) and ϕ(x) is determined.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 50 条
  • [1] Flow in random porous media
    Keller, JB
    TRANSPORT IN POROUS MEDIA, 2001, 43 (03) : 395 - 406
  • [2] Viscoelastic flow simulations in random porous media
    De, S.
    Kuipers, J. A. M.
    Peters, E. A. J. F.
    Padding, J. T.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2017, 248 : 50 - 61
  • [3] Nonstationary flow and nonergodic transport in random porous media
    Darvini, G.
    Salandin, P.
    WATER RESOURCES RESEARCH, 2006, 42 (12)
  • [4] Stochastic characterization of multiphase flow in random porous media
    Ghanem, R
    Dham, S
    COMPUTER METHODS AND WATER RESOURCES III, 1996, : 315 - 322
  • [5] RANDOM MAZE MODELS OF FLOW THROUGH POROUS MEDIA
    TORELLI, L
    SCHEIDEG.AE
    PURE AND APPLIED GEOPHYSICS, 1971, 89 (06) : 32 - &
  • [6] Stokes flow in random, anisotropic and correlated pixelized porous media
    Kikkinides, ES
    Burganos, VN
    COMPUTATIONAL METHODS IN CONTAMINATION AND REMEDIATION OF WATER RESOURCES: PROCEEDINGS OF 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 1, 1998, 12 : 215 - 222
  • [7] Stochastic flowpath analysis of multiphase flow in random porous media
    Christakos, G
    Hristopulos, DT
    Kolovos, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) : 1520 - 1542
  • [8] Evaluation of the path integral for flow through random porous media
    Westbroek, Marise J. E.
    Coche, Gil-Arnaud
    King, Peter R.
    Vvedensky, Dimitri D.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [9] FLOW PROPERTIES OF POROUS-MEDIA - RANDOM NETWORK APPROACH
    MADDEN, TR
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1976, 57 (12): : 1005 - 1005
  • [10] Experimental analysis of the flow near the boundary of random porous media
    Wu, Zhenxing
    Mirbod, Parisa
    PHYSICS OF FLUIDS, 2018, 30 (04)