Evaluation of the path integral for flow through random porous media

被引:4
|
作者
Westbroek, Marise J. E. [1 ,2 ]
Coche, Gil-Arnaud [3 ]
King, Peter R. [1 ]
Vvedensky, Dimitri D. [2 ]
机构
[1] Imperial Coll London, Dept Earth Sci & Engn, London SW7 2BP, England
[2] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[3] Accuracy, 41 Rue Villiers, F-92200 Neuilly Sur Seine, France
基金
英国工程与自然科学研究理事会;
关键词
NUMERICAL-SIMULATION; FLUID-FLOW;
D O I
10.1103/PhysRevE.97.042119
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a path integral formulation of Darcy's equation in one dimension with random permeability described by a correlated multivariate lognormal distribution. This path integral is evaluated with the Markov chain Monte Carlo method to obtain pressure distributions, which are shown to agree with the solutions of the corresponding stochastic differential equation for Dirichlet and Neumann boundary conditions. The extension of our approach to flow through random media in two and three dimensions is discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Pressure statistics from the path integral for Darcy flow through random porous media
    Westbroek, Marise J. E.
    Coche, Gil-Arnaud
    King, Peter R.
    Vvedensky, Dimitri D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (18)
  • [2] GENERAL INTEGRAL EQUATIONS OF STOKES FLOW THROUGH THE RANDOM STRUCTURE POROUS MEDIA
    Buryachenko, Valeriy A.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2015, 13 (05) : 375 - 392
  • [3] PATH-INTEGRAL VARIATIONAL-METHODS FOR FLOW-THROUGH POROUS-MEDIA
    TANKSLEY, MA
    KOPLIK, J
    PHYSICAL REVIEW E, 1994, 49 (02): : 1353 - 1366
  • [4] RANDOM MAZE MODELS OF FLOW THROUGH POROUS MEDIA
    TORELLI, L
    SCHEIDEG.AE
    PURE AND APPLIED GEOPHYSICS, 1971, 89 (06) : 32 - &
  • [5] Flow in Random Porous Media
    Joseph B. Keller
    Transport in Porous Media, 2001, 43 : 395 - 406
  • [6] Flow in random porous media
    Keller, JB
    TRANSPORT IN POROUS MEDIA, 2001, 43 (03) : 395 - 406
  • [7] An efficient boundary integral formulation for flow through fractured porous media
    Lough, MF
    Lee, SH
    Kamath, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 143 (02) : 462 - 483
  • [8] THE RANDOM-WALK MODEL WITH AUTOCORRELATION OF FLOW THROUGH POROUS MEDIA
    SCHEIDEGGER, AE
    CANADIAN JOURNAL OF PHYSICS, 1958, 36 (06) : 649 - 658
  • [9] Dynamics of Contaminant Flow Through Porous Media Containing Random Adsorbers
    Pettersson, Kaj
    Nordlander, Albin
    Kalagasidis, Angela Sasic
    Modin, Oskar
    Maggiolo, Dario
    TRANSPORT IN POROUS MEDIA, 2025, 152 (02)
  • [10] A stochastic multiscale framework for modeling flow through random heterogeneous porous media
    Ganapathysubramanian, B.
    Zabaras, N.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) : 591 - 618