Flow in Random Porous Media

被引:0
|
作者
Joseph B. Keller
机构
[1] Stanford University,Departments of Mathematics and Mechanical Engineering
来源
Transport in Porous Media | 2001年 / 43卷
关键词
Randommedia; effective conductivity; effective permeability; hydraulic conductivity; modified Darcy law; nonlocal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
Flow in a porous medium with a random hydraulic conductivity tensor K(x) is analyzed when the mean conductivity tensor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline K$$ \end{document}(x) is a non-constant function of position x. The results are a non-local expression for the mean flux vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline q$$ \end{document}(x) in terms of the gradient of the mean hydraulic head \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), an integrodifferential equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), and expressions for the two point covariance functions of q(x) and ϕ(x). When K(x) is a Gaussian random function, the joint probability distribution of the functions q(x) and ϕ(x) is determined.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 50 条
  • [41] FLOW IN HETEROGENEOUS POROUS MEDIA
    WARREN, JE
    PRICE, HS
    TRANSACTIONS OF THE SOCIETY OF PETROLEUM ENGINEERS OF AIME, 1961, 222 (03): : 153 - 169
  • [42] Nonlinear flow in porous media
    Rojas, S
    Koplik, J
    PHYSICAL REVIEW E, 1998, 58 (04): : 4776 - 4782
  • [43] FLUID FLOW IN POROUS MEDIA
    RAMSEY, TL
    HUANG, JH
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1968, 49 (01): : 172 - &
  • [44] Polymer flow in porous media
    Ranjbar, M.
    Erdoel & Kohle, Erdgas, Petrochemie, 1994, 47 (03): : 95 - 101
  • [45] FLUID FLOW IN POROUS MEDIA
    BARRER, RM
    TRANSACTIONS OF THE FARADAY SOCIETY, 1948, 44 (03): : 61 - 72
  • [46] Multiphase flow in porous media
    Higdon, J. J. L.
    JOURNAL OF FLUID MECHANICS, 2013, 730 : 1 - 4
  • [47] FLOW OF SUPERFLUIDITY IN POROUS MEDIA
    ICHIYANAGI, M
    PROGRESS OF THEORETICAL PHYSICS, 1973, 50 (02): : 386 - 392
  • [48] Slip flow in porous media
    Moghaddam, Rasoul Nazari
    Jamiolahmady, Mahmoud
    FUEL, 2016, 173 : 298 - 310
  • [49] Minisymposium "Flow in Porous Media"
    Svanstedt, Nils
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 317 - 317
  • [50] FLOW OF GASES IN POROUS MEDIA
    WILSON, LH
    SIBBITT, WL
    JAKOB, M
    JOURNAL OF APPLIED PHYSICS, 1951, 22 (08) : 1027 - 1030