Flow in Random Porous Media

被引:0
|
作者
Joseph B. Keller
机构
[1] Stanford University,Departments of Mathematics and Mechanical Engineering
来源
Transport in Porous Media | 2001年 / 43卷
关键词
Randommedia; effective conductivity; effective permeability; hydraulic conductivity; modified Darcy law; nonlocal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
Flow in a porous medium with a random hydraulic conductivity tensor K(x) is analyzed when the mean conductivity tensor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline K$$ \end{document}(x) is a non-constant function of position x. The results are a non-local expression for the mean flux vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline q$$ \end{document}(x) in terms of the gradient of the mean hydraulic head \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), an integrodifferential equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), and expressions for the two point covariance functions of q(x) and ϕ(x). When K(x) is a Gaussian random function, the joint probability distribution of the functions q(x) and ϕ(x) is determined.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 50 条
  • [21] Finite volume modeling method for random process of dispersive flow in porous media
    Wang C.-J.
    Jiang H.-Q.
    Qin S.-G.
    Li J.-J.
    Zhongguo Shiyou Daxue Xuebao (Ziran Kexue Ban)/Journal of China University of Petroleum (Edition of Natural Science), 2011, 35 (01): : 93 - 97
  • [22] A Markov random field model of contamination source identification in porous media flow
    Wang, JB
    Zabaras, N
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (5-6) : 939 - 950
  • [23] Homogenization of immiscible compressible two-phase flow in random porous media
    Amaziane, B.
    Pankratov, L.
    Piatnitski, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 305 : 206 - 223
  • [24] EFFECTIVE EQUATIONS FOR FLOW IN RANDOM POROUS-MEDIA WITH A LARGE NUMBER OF SCALES
    RUBINSTEIN, J
    JOURNAL OF FLUID MECHANICS, 1986, 170 : 379 - 383
  • [25] Flow Intermittency, Dispersion, and Correlated Continuous Time Random Walks in Porous Media
    de Anna, Pietro
    Le Borgne, Tanguy
    Dentz, Marco
    Tartakovsky, Alexandre M.
    Bolster, Diogo
    Davy, Philippe
    PHYSICAL REVIEW LETTERS, 2013, 110 (18)
  • [26] 2-PHASE FLOW IN RANDOM NETWORK MODELS OF POROUS-MEDIA
    KOPLIK, J
    LASSETER, TJ
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1985, 25 (01): : 89 - 100
  • [27] Darcy equation for random porous media
    Beliaev, AY
    Kozlov, SM
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1996, 49 (01) : 1 - 34
  • [28] Electrokinetics in random piezoelectric porous media
    Telega, J. J.
    Wojnar, R.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2007, 55 (01) : 125 - 128
  • [29] Random walks in prefractal porous media
    Sternberg, SPK
    Cushman, JH
    Greenkorn, RA
    AICHE JOURNAL, 1996, 42 (04) : 921 - 926
  • [30] Microfluidics of imbibition in random porous media
    Wiklund, H. S.
    Uesaka, T.
    PHYSICAL REVIEW E, 2013, 87 (02):