Flow in Random Porous Media

被引:0
|
作者
Joseph B. Keller
机构
[1] Stanford University,Departments of Mathematics and Mechanical Engineering
来源
Transport in Porous Media | 2001年 / 43卷
关键词
Randommedia; effective conductivity; effective permeability; hydraulic conductivity; modified Darcy law; nonlocal conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
Flow in a porous medium with a random hydraulic conductivity tensor K(x) is analyzed when the mean conductivity tensor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline K$$ \end{document}(x) is a non-constant function of position x. The results are a non-local expression for the mean flux vector \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline q$$ \end{document}(x) in terms of the gradient of the mean hydraulic head \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), an integrodifferential equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline \varphi$$ \end{document}(x), and expressions for the two point covariance functions of q(x) and ϕ(x). When K(x) is a Gaussian random function, the joint probability distribution of the functions q(x) and ϕ(x) is determined.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 50 条
  • [31] On a random scaled porous media equation
    Barbu, Viorel
    Roeckner, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2494 - 2514
  • [32] DIFFUSION IN POROUS MEDIA OF RANDOM STRUCTURE
    PISMEN, LM
    DOKLADY AKADEMII NAUK SSSR, 1973, 212 (05): : 1172 - 1175
  • [33] Electrokinetics in random deformable porous media
    Telega, JJ
    Wojnar, R
    IUTAM SYMPOSIUM ON PHYSICOCHEMICAL AND ELECTROMECHANICAL INTERACTIONS IN POROUS MEDIA, 2005, 125 : 117 - 124
  • [34] A nonparametric belief propagation method for uncertainty quantification with applications to flow in random porous media
    Chen, Peng
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 616 - 643
  • [35] Two-phase flow in correlated pore-throat random porous media
    Tian, JP
    Yao, KL
    CHINESE PHYSICS, 2002, 11 (04): : 358 - 365
  • [36] Pressure statistics from the path integral for Darcy flow through random porous media
    Westbroek, Marise J. E.
    Coche, Gil-Arnaud
    King, Peter R.
    Vvedensky, Dimitri D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (18)
  • [37] Large-scale properties for two-phase flow in random porous media
    Ahmadi, A
    Quintard, M
    JOURNAL OF HYDROLOGY, 1996, 183 (1-2) : 69 - 99
  • [38] Tortuous flow in porous media
    Koponen, A
    Kataja, M
    Timonen, J
    PHYSICAL REVIEW E, 1996, 54 (01): : 406 - 410
  • [39] FLOW IN HETEROGENEOUS POROUS MEDIA
    WARREN, JE
    PRICE, HS
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1961, 1 (03): : 153 - 169
  • [40] Acoustic flow in porous media
    Manor, Ofer
    JOURNAL OF FLUID MECHANICS, 2021, 920 (920)