Parameterized Algorithms and Kernels for Rainbow Matching

被引:0
|
作者
Sushmita Gupta
Sanjukta Roy
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,The Institute of Mathematical Sciences
[2] HBNI,undefined
[3] Ben-Gurion University,undefined
来源
Algorithmica | 2019年 / 81卷
关键词
Rainbow matching; Parameterized algorithm; Bounded search trees; Divide-and-conquer; 3-Set packing; 3-Dimensional matching;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the NP-complete colorful variant of the classical Matching problem, namely, the Rainbow Matching problem. Given an edge-colored graph G and a positive integer k, this problem asks whether there exists a matching of size at least k such that all the edges in the matching have distinct colors. We first develop a deterministic algorithm that solves Rainbow Matching on paths in time O⋆1+52k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}^\star \left( \left( \frac{1+\sqrt{5}}{2}\right) ^k\right) $$\end{document} and polynomial space. This algorithm is based on a curious combination of the method of bounded search trees and a “divide-and-conquer-like” approach, where the branching process is guided by the maintenance of an auxiliary bipartite graph where one side captures “divided-and-conquered” pieces of the path. Our second result is a randomized algorithm that solves Rainbow Matching on general graphs in time O⋆(2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} ^\star (2^k)$$\end{document} and polynomial-space. Here, we show how a result by Björklund et al. (J Comput Syst Sci 87:119–139, 2017) can be invoked as a black box, wrapped by a probability-based analysis tailored to our problem. We also complement our two main results by designing kernels for Rainbow Matching on general and bounded-degree graphs.
引用
收藏
页码:1684 / 1698
页数:14
相关论文
共 50 条
  • [21] Parameterized matching with mismatches
    Apostolico, Alberto
    Erdos, Peter L.
    Lewenstein, Moshe
    JOURNAL OF DISCRETE ALGORITHMS, 2007, 5 (01) : 135 - 140
  • [22] Approximate Parameterized Matching
    Hazay, Carmit
    Lewenstein, Moshe
    Sokol, Dina
    ACM TRANSACTIONS ON ALGORITHMS, 2007, 3 (03)
  • [23] The Parameterized Complexity of the Rainbow Subgraph Problem
    Hueffner, Falk
    Komusiewicz, Christian
    Niedermeier, Rolf
    Roetzschke, Martin
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2014, 8747 : 287 - 298
  • [24] Parameterized Algorithms for Boxicity
    Adiga, Abhijin
    Chitnis, Rajesh
    Saurabh, Saket
    ALGORITHMS AND COMPUTATION, PT I, 2010, 6506 : 366 - +
  • [25] Subexponential parameterized algorithms
    Dorn, Frederic
    Fomin, Fedor V.
    Thilikos, Dimitrios M.
    COMPUTER SCIENCE REVIEW, 2008, 2 (01) : 29 - 39
  • [26] Subexponential parameterized algorithms
    Dorn, Frederic
    Fomin, Fedor V.
    Thilikos, Dimitrios M.
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 15 - +
  • [27] The Parameterized Complexity of the Rainbow Subgraph Problem
    Hueffner, Falk
    Komusiewicz, Christian
    Niedermeier, Rolf
    Roetzschke, Martin
    ALGORITHMS, 2015, 8 (01) : 60 - 81
  • [28] A note on parameterized Marcinkiewicz integrals with variable kernels
    WANG Hui1 ZHANG Chun-jie2 1 Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2009, (03) : 315 - 320
  • [29] A note on parameterized Marcinkiewicz integrals with variable kernels
    Wang Hui
    Zhang Chun-jie
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (03) : 315 - 320
  • [30] Secure parameterized pattern matching
    Zarezadeh, Maryam
    Mala, Hamid
    Ladani, Behrouz Tork
    INFORMATION SCIENCES, 2020, 522 : 299 - 316