A note on parameterized Marcinkiewicz integrals with variable kernels

被引:0
|
作者
Wang Hui [1 ]
Zhang Chun-jie [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
parameterized Marcinkiewicz integral; variable kernel; rotation method; CALDERON-ZYGMUND METHOD; OPERATORS; ROTATIONS; SPACES;
D O I
10.1007/s11766-009-2133-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the parameterized Marcinkiewicz integrals with variable kernels defined by [GRAPHICS] are investigated. It is proved that if Omega is an element of L(infinity)(R(n)) x L(r) (S(n-1)) (r > (n-1)p'/n) is an odd function in the second variable y', then the operator mu(rho)(Omega) is bounded from L(p)(R(n)) to L(p)(R(n)) for 1 < p <= max{(n+1)/2, 2}. It is also proved that, if Omega satisfies the L(1)-Dini condition, then mu(rho)(Omega) is of type (p, p) for 1 < p <= 2, of the weak type (1, 1) and bounded from H(1) to L(1).
引用
收藏
页码:315 / 320
页数:6
相关论文
共 50 条