Subexponential parameterized algorithms

被引:32
|
作者
Dorn, Frederic [1 ]
Fomin, Fedor V. [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[3] Univ Athens, Dept Math, GR-15784 Athens, Greece
关键词
D O I
10.1016/j.cosrev.2008.02.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a review of a series of techniques and results on the design of subexponential parameterized algorithms for graph problems. The design of such algorithms usually consists of two main steps: first find a branch (or tree) decomposition of the input graph whose width is bounded by a sublinear function of the parameter and, second, use this decomposition to solve the problem in time that is single exponential to this bound. The main tool for the first step is the Bidimensionality Theory. Here we present not only the potential, but also the boundaries, of this theory. For the second step, we describe recent techniques, associating the analysis of subexponential algorithms to combinatorial bounds related to Catalan numbers. As a result, we have 2(O(root k))center dot n(O(1)) time algorithms for a wide variety of parameterized problems on graphs, where n is the size of the graph and k is the parameter. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条
  • [1] Subexponential parameterized algorithms
    Dorn, Frederic
    Fomin, Fedor V.
    Thilikos, Dimitrios M.
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 15 - +
  • [2] On the existence of subexponential parameterized algorithms
    Cai, LM
    Juedes, D
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 67 (04) : 789 - 807
  • [3] Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs
    Fedor V. Fomin
    Petr A. Golovach
    [J]. Algorithmica, 2021, 83 : 2170 - 2214
  • [4] Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs
    Fomin, Fedor, V
    Golovach, Petr A.
    [J]. ALGORITHMICA, 2021, 83 (07) : 2170 - 2214
  • [5] Subexponential parameterized algorithms collapse the W-hierarchy
    Cai, LM
    Juedes, D
    [J]. AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 273 - 284
  • [6] BEYOND BIDIMENSIONALITY: PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS
    Dorn, Frederic
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Raman, Venkatesh
    Saurabh, Saket
    [J]. 27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 251 - 262
  • [7] Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs
    Dorn, Frederic
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Raman, Venkatesh
    Saurabh, Saket
    [J]. INFORMATION AND COMPUTATION, 2013, 233 : 60 - 70
  • [8] Subexponential Parameterized Algorithms on Disk Graphs (Extended Abstract)
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    Xue, Jie
    Zehavi, Meirav
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2005 - 2031
  • [9] A Framework for Parameterized Subexponential Algorithms for Generalized Cycle Hitting Problems on Planar Graphs
    Marx, Daniel
    Misra, Pranabendu
    Neuen, Daniel
    Tale, Prafullkumar
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2085 - 2127
  • [10] On subexponential parameterized algorithms for Steiner Tree and Directed Subset TSP on planar graphs
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    [J]. 2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, : 474 - 484