Subexponential parameterized algorithms

被引:33
|
作者
Dorn, Frederic [1 ]
Fomin, Fedor V. [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Humboldt Univ, Inst Informat, D-10099 Berlin, Germany
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[3] Univ Athens, Dept Math, GR-15784 Athens, Greece
关键词
D O I
10.1016/j.cosrev.2008.02.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a review of a series of techniques and results on the design of subexponential parameterized algorithms for graph problems. The design of such algorithms usually consists of two main steps: first find a branch (or tree) decomposition of the input graph whose width is bounded by a sublinear function of the parameter and, second, use this decomposition to solve the problem in time that is single exponential to this bound. The main tool for the first step is the Bidimensionality Theory. Here we present not only the potential, but also the boundaries, of this theory. For the second step, we describe recent techniques, associating the analysis of subexponential algorithms to combinatorial bounds related to Catalan numbers. As a result, we have 2(O(root k))center dot n(O(1)) time algorithms for a wide variety of parameterized problems on graphs, where n is the size of the graph and k is the parameter. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条
  • [31] A general framework for subexponential discrete logarithm algorithms
    Enge, A
    Gaudry, P
    ACTA ARITHMETICA, 2002, 102 (01) : 83 - 103
  • [32] Subexponential algorithms for class group and unit computations
    Cohen, H
    Diaz, FDY
    Olivier, M
    JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 433 - 441
  • [33] Subexponential Algorithms for Unique Games and Related Problems
    Arora, Sanjeev
    Barak, Boaz
    Steurer, David
    JOURNAL OF THE ACM, 2015, 62 (05)
  • [34] Subexponential-Time Algorithms for Sparse PCA
    Ding, Yunzi
    Kunisky, Dmitriy
    Wein, Alexander S.
    Bandeira, Afonso S.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (03) : 865 - 914
  • [35] A SUBEXPONENTIAL PARAMETERIZED ALGORITHM FOR DIRECTED SUBSET TRAVELING SALESMAN PROBLEM ON PLANAR GRAPHS
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    SIAM JOURNAL ON COMPUTING, 2022, 51 (02) : 254 - 289
  • [36] Parameterized complexity and approximation algorithms
    Marx, Daniel
    COMPUTER JOURNAL, 2008, 51 (01): : 60 - 78
  • [37] Parameterized Algorithms for Queue Layouts
    Bhore S.
    Ganian R.
    Montecchiani F.
    Nöllenburg M.
    Journal of Graph Algorithms and Applications, 2022, 26 (03) : 335 - 352
  • [38] Dynamic Parameterized Problems and Algorithms
    Alman, Josh
    Mnich, Matthias
    Williams, Virginia Vassilevska
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (04)
  • [39] Exact and Parameterized Algorithms for Choosability
    Bliznets, Ivan
    Nederlof, Jesper
    SOFSEM 2024: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2024, 14519 : 111 - 124