Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs

被引:0
|
作者
Fedor V. Fomin
Petr A. Golovach
机构
[1] University of Bergen,Department of Informatics
来源
Algorithmica | 2021年 / 83卷
关键词
Parameterized complexity; Structural parameterization; Subexponential algorithms; Kernelization; Chordal graphs; Fill-in; Independent set; Clique; Coloring; 05C85; 05C69; 68R10;
D O I
暂无
中图分类号
学科分类号
摘要
We study algorithmic properties of the graph class CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document}, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. It appears that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document}. More precisely, we identify a large class of optimization problems on CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document} solvable in time 2O(klogk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal{O}}(\sqrt{k}\log k)}\cdot n^{{\mathcal{O}}(1)}$$\end{document}. Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document} when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document} graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document} graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document} graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of CHORDAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Chordal}}{-ke}$$\end{document}, namely, INTERVAL-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Interval}}{-ke}$$\end{document} and SPLIT-ke\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {Split}}{-ke}$$\end{document} graphs.
引用
收藏
页码:2170 / 2214
页数:44
相关论文
共 50 条
  • [1] Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs
    Fomin, Fedor, V
    Golovach, Petr A.
    [J]. ALGORITHMICA, 2021, 83 (07) : 2170 - 2214
  • [2] BEYOND BIDIMENSIONALITY: PARAMETERIZED SUBEXPONENTIAL ALGORITHMS ON DIRECTED GRAPHS
    Dorn, Frederic
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Raman, Venkatesh
    Saurabh, Saket
    [J]. 27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 251 - 262
  • [3] Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs
    Dorn, Frederic
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Raman, Venkatesh
    Saurabh, Saket
    [J]. INFORMATION AND COMPUTATION, 2013, 233 : 60 - 70
  • [4] Subexponential Parameterized Algorithms on Disk Graphs (Extended Abstract)
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    Xue, Jie
    Zehavi, Meirav
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2005 - 2031
  • [5] Subexponential parameterized algorithms
    Dorn, Frederic
    Fomin, Fedor V.
    Thilikos, Dimitrios M.
    [J]. COMPUTER SCIENCE REVIEW, 2008, 2 (01) : 29 - 39
  • [6] Subexponential parameterized algorithms
    Dorn, Frederic
    Fomin, Fedor V.
    Thilikos, Dimitrios M.
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 15 - +
  • [7] On the existence of subexponential parameterized algorithms
    Cai, LM
    Juedes, D
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 67 (04) : 789 - 807
  • [8] A Framework for Parameterized Subexponential Algorithms for Generalized Cycle Hitting Problems on Planar Graphs
    Marx, Daniel
    Misra, Pranabendu
    Neuen, Daniel
    Tale, Prafullkumar
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2085 - 2127
  • [9] Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs
    Demaine, ED
    Fomin, FV
    Hajiaghayi, M
    Thilikos, DM
    [J]. JOURNAL OF THE ACM, 2005, 52 (06) : 866 - 893
  • [10] On subexponential parameterized algorithms for Steiner Tree and Directed Subset TSP on planar graphs
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    [J]. 2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, : 474 - 484