The Parameterized Complexity of the Rainbow Subgraph Problem

被引:0
|
作者
Hueffner, Falk [1 ]
Komusiewicz, Christian [1 ]
Niedermeier, Rolf [1 ]
Roetzschke, Martin [1 ]
机构
[1] TU Berlin, Inst Softwaretech & Theoret Informat, Berlin, Germany
关键词
D O I
10.1007/978-3-319-12340-0_24
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The NP-hard RAINBOW SUBGRAPH problem, motivated from bioinformatics, is to find in an edge-colored graph a subgraph that contains each edge color exactly once and has at most k vertices. We examine the parameterized complexity of RAINBOW SUBGRAPH for paths, trees, and general graphs. We show, for example, APX-hardness even if the input graph is a properly edge-colored path in which every color occurs at most twice. Moreover, we show that RAINBOW SUBGRAPH is W[1]-hard with respect to the parameter k and also with respect to the dual parameter l := n-k where n is the number of vertices. Hence, we examine parameter combinations and show, for example, a polynomial-size problem kernel for the combined parameter l and "maximum number of colors incident with any vertex".
引用
收藏
页码:287 / 298
页数:12
相关论文
共 50 条
  • [1] The Parameterized Complexity of the Rainbow Subgraph Problem
    Hueffner, Falk
    Komusiewicz, Christian
    Niedermeier, Rolf
    Roetzschke, Martin
    ALGORITHMS, 2015, 8 (01) : 60 - 81
  • [2] Parameterized complexity of the induced subgraph problem in directed graphs
    Raman, Venkatesh
    Sikdar, Somnath
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 79 - 85
  • [3] Parameterized complexity of the smallest degree-constrained subgraph problem
    Amini, Omid
    Sau, Ignasi
    Saurabh, Saket
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2008, 5018 : 13 - +
  • [4] Parameterized complexity of spare capacity allocation and the multicost Steiner subgraph problem
    Jordan, Tibor
    Schlotter, Ildiko
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 30 : 29 - 44
  • [5] Parameterized Complexity of the Sparsest k-Subgraph Problem in Chordal Graphs
    Bougeret, Marin
    Bousquet, Nicolas
    Giroudeau, Rodolphe
    Watrigant, Remi
    SOFSEM 2014: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2014, 8327 : 150 - 161
  • [6] Parameterized Complexity of Connected Induced Subgraph Problems
    Cai, Leizhen
    Ye, Junjie
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 219 - 230
  • [7] Parameterized Complexity of Maximum Edge Colorable Subgraph
    Akanksha Agrawal
    Madhumita Kundu
    Abhishek Sahu
    Saket Saurabh
    Prafullkumar Tale
    Algorithmica, 2022, 84 : 3075 - 3100
  • [8] Parameterized Complexity of MAXIMUM EDGE COLORABLE SUBGRAPH
    Agrawal, Akanksha
    Kundu, Madhumita
    Sahu, Abhishek
    Saurabh, Saket
    Tale, Prafullkumar
    COMPUTING AND COMBINATORICS (COCOON 2020), 2020, 12273 : 615 - 626
  • [9] Parameterized Complexity of Even/Odd Subgraph Problems
    Cai, Leizhen
    Yang, Boting
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 85 - +
  • [10] Parameterized Complexity of Maximum Edge Colorable Subgraph
    Agrawal, Akanksha
    Kundu, Madhumita
    Sahu, Abhishek
    Saurabh, Saket
    Tale, Prafullkumar
    ALGORITHMICA, 2022, 84 (10) : 3075 - 3100