Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods

被引:0
|
作者
Michel Tenenhaus
Arthur Tenenhaus
Patrick J. F. Groenen
机构
[1] HEC Paris,Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506)
[2] CentraleSupelec-L2S-Université Paris-Sud,Bioinformatics and Biostatistics Core Facility
[3] Brain and Spine Institute,Econometric Institute, Erasmus School of Economics
[4] Erasmus University,undefined
来源
Psychometrika | 2017年 / 82卷
关键词
consensus PCA; hierarchical PCA; MAXBET; MAXDIFF; MAXVAR; multiblock component methods; PLS path modeling; GCCA; RGCCA; SSQCOR; SUMCOR;
D O I
暂无
中图分类号
学科分类号
摘要
A new framework for sequential multiblock component methods is presented. This framework relies on a new version of regularized generalized canonical correlation analysis (RGCCA) where various scheme functions and shrinkage constants are considered. Two types of between block connections are considered: blocks are either fully connected or connected to the superblock (concatenation of all blocks). The proposed iterative algorithm is monotone convergent and guarantees obtaining at convergence a stationary point of RGCCA. In some cases, the solution of RGCCA is the first eigenvalue/eigenvector of a certain matrix. For the scheme functions x, |x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }x{\vert }$$\end{document}, x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}$$\end{document} or x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{4}$$\end{document} and shrinkage constants 0 or 1, many multiblock component methods are recovered.
引用
收藏
页码:737 / 777
页数:40
相关论文
共 50 条
  • [21] Regularized Multiple-Set Canonical Correlation Analysis
    Yoshio Takane
    Heungsun Hwang
    Hervé Abdi
    Psychometrika, 2008, 73 : 753 - 775
  • [22] Regularized Multiple-Set Canonical Correlation Analysis
    Takane, Yoshio
    Hwang, Heungsun
    Abdi, Herve
    PSYCHOMETRIKA, 2008, 73 (04) : 753 - 775
  • [23] A Novel Generalized Fuzzy Canonical Correlation Analysis Framework for Feature Fusion and Recognition
    Yang, Jing
    Sun, Quan-Sen
    NEURAL PROCESSING LETTERS, 2017, 46 (02) : 521 - 536
  • [24] A Novel Generalized Fuzzy Canonical Correlation Analysis Framework for Feature Fusion and Recognition
    Jing Yang
    Quan-Sen Sun
    Neural Processing Letters, 2017, 46 : 521 - 536
  • [25] Robust generalized canonical correlation analysis
    Yan, He
    Cheng, Li
    Ye, Qiaolin
    Yu, Dong-Jun
    Qi, Yong
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21140 - 21155
  • [26] Tensor generalized canonical correlation analysis
    Girka, Fabien
    Gloaguen, Arnaud
    Le Brusquet, Laurent
    Zujovic, Violetta
    Tenenhaus, Arthur
    INFORMATION FUSION, 2024, 102
  • [27] Robust generalized canonical correlation analysis
    He Yan
    Li Cheng
    Qiaolin Ye
    Dong-Jun Yu
    Yong Qi
    Applied Intelligence, 2023, 53 : 21140 - 21155
  • [28] Generalized constrained canonical correlation analysis
    Takane, Y
    Hwang, HS
    MULTIVARIATE BEHAVIORAL RESEARCH, 2002, 37 (02) : 163 - 195
  • [29] Multiway generalized canonical correlation analysis
    Gloaguen, Arnaud
    Philippe, Cathy
    Frouin, Vincent
    Gennari, Giulia
    Dehaene-Lambertz, Ghislaine
    Le Brusquet, Laurent
    Tenenhaus, Arthur
    BIOSTATISTICS, 2022, 23 (01) : 240 - 256
  • [30] Kernel Generalized Canonical Correlation Analysis
    Tenenhaus, Arthur
    Philippe, Cathy
    Frouin, Vincent
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 90 : 114 - 131