Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods

被引:0
|
作者
Michel Tenenhaus
Arthur Tenenhaus
Patrick J. F. Groenen
机构
[1] HEC Paris,Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506)
[2] CentraleSupelec-L2S-Université Paris-Sud,Bioinformatics and Biostatistics Core Facility
[3] Brain and Spine Institute,Econometric Institute, Erasmus School of Economics
[4] Erasmus University,undefined
来源
Psychometrika | 2017年 / 82卷
关键词
consensus PCA; hierarchical PCA; MAXBET; MAXDIFF; MAXVAR; multiblock component methods; PLS path modeling; GCCA; RGCCA; SSQCOR; SUMCOR;
D O I
暂无
中图分类号
学科分类号
摘要
A new framework for sequential multiblock component methods is presented. This framework relies on a new version of regularized generalized canonical correlation analysis (RGCCA) where various scheme functions and shrinkage constants are considered. Two types of between block connections are considered: blocks are either fully connected or connected to the superblock (concatenation of all blocks). The proposed iterative algorithm is monotone convergent and guarantees obtaining at convergence a stationary point of RGCCA. In some cases, the solution of RGCCA is the first eigenvalue/eigenvector of a certain matrix. For the scheme functions x, |x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }x{\vert }$$\end{document}, x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}$$\end{document} or x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{4}$$\end{document} and shrinkage constants 0 or 1, many multiblock component methods are recovered.
引用
收藏
页码:737 / 777
页数:40
相关论文
共 50 条
  • [1] Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods
    Tenenhaus, Michel
    Tenenhaus, Arthur
    Groenen, Patrick J. F.
    PSYCHOMETRIKA, 2017, 82 (03) : 737 - 777
  • [2] Regularized generalized canonical correlation analysis for multiblock or multigroup data analysis
    Tenenhaus, Arthur
    Tenenhaus, Michel
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 238 (02) : 391 - 403
  • [3] A framework for sequential multiblock component methods
    Smilde, AK
    Westerhuis, JA
    de Jong, S
    JOURNAL OF CHEMOMETRICS, 2003, 17 (06) : 323 - 337
  • [4] Regularized Generalized Canonical Correlation Analysis
    Tenenhaus, Arthur
    Tenenhaus, Michel
    PSYCHOMETRIKA, 2011, 76 (02) : 257 - 284
  • [5] Regularized Generalized Canonical Correlation Analysis
    Arthur Tenenhaus
    Michel Tenenhaus
    Psychometrika, 2011, 76
  • [6] Multiview Regularized Discriminant Canonical Correlation Analysis: Sequential Extraction of Relevant Features From Multiblock Data
    Mandal, Ankita
    Maji, Pradipta
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (09) : 5497 - 5509
  • [7] Functional regularized generalized canonical correlation analysis
    Wang Z.
    Tenenhaus A.
    Wang H.
    Zhao Q.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (10): : 1960 - 1969
  • [8] Structured Variable Selection for Regularized Generalized Canonical Correlation Analysis
    Lofstedt, Tommy
    Hadj-Selem, Fouad
    Guillemot, Vincent
    Philippe, Cathy
    Duchesnay, Edouard
    Frouin, Vincent
    Tenenhaus, Arthur
    MULTIPLE FACETS OF PARTIAL LEAST SQUARES AND RELATED METHODS, 2016, 173 : 129 - 139
  • [9] Fast regularized canonical correlation analysis
    Cruz-Cano, Raul
    Lee, Mei-Ling Ting
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 88 - 100
  • [10] Clusterwise analysis for multiblock component methods
    Stéphanie Bougeard
    Hervé Abdi
    Gilbert Saporta
    Ndèye Niang
    Advances in Data Analysis and Classification, 2018, 12 : 285 - 313