Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods

被引:0
|
作者
Michel Tenenhaus
Arthur Tenenhaus
Patrick J. F. Groenen
机构
[1] HEC Paris,Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506)
[2] CentraleSupelec-L2S-Université Paris-Sud,Bioinformatics and Biostatistics Core Facility
[3] Brain and Spine Institute,Econometric Institute, Erasmus School of Economics
[4] Erasmus University,undefined
来源
Psychometrika | 2017年 / 82卷
关键词
consensus PCA; hierarchical PCA; MAXBET; MAXDIFF; MAXVAR; multiblock component methods; PLS path modeling; GCCA; RGCCA; SSQCOR; SUMCOR;
D O I
暂无
中图分类号
学科分类号
摘要
A new framework for sequential multiblock component methods is presented. This framework relies on a new version of regularized generalized canonical correlation analysis (RGCCA) where various scheme functions and shrinkage constants are considered. Two types of between block connections are considered: blocks are either fully connected or connected to the superblock (concatenation of all blocks). The proposed iterative algorithm is monotone convergent and guarantees obtaining at convergence a stationary point of RGCCA. In some cases, the solution of RGCCA is the first eigenvalue/eigenvector of a certain matrix. For the scheme functions x, |x|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\vert }x{\vert }$$\end{document}, x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{2}$$\end{document} or x4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{4}$$\end{document} and shrinkage constants 0 or 1, many multiblock component methods are recovered.
引用
收藏
页码:737 / 777
页数:40
相关论文
共 50 条
  • [31] Incremental Generalized Canonical Correlation Analysis
    Markos, Angelos
    D'Enza, Alfonso Iodice
    ANALYSIS OF LARGE AND COMPLEX DATA, 2016, : 185 - 194
  • [32] Deep Generalized Canonical Correlation Analysis
    Benton, Adrian
    Khayrallah, Huda
    Gujral, Biman
    Reisinger, Dee Ann
    Zhang, Sheng
    Arora, Raman
    4TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP (REPL4NLP-2019), 2019, : 1 - 6
  • [33] Generalized canonical correlation analysis for classification
    Shen, Cencheng
    Sun, Ming
    Tang, Minh
    Priebe, Carey E.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 130 : 310 - 322
  • [34] Distributed Statistical Process Monitoring Based on Multiblock Canonical Correlation Analysis
    Wan, Xinchun
    Tong, Chudong
    Luo, Lijia
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (03) : 1193 - 1201
  • [35] Generalized orthogonal multiple co-inertia analysis(-PLS): new multiblock component and regression methods
    Vivien, M
    Sabatier, R
    JOURNAL OF CHEMOMETRICS, 2003, 17 (05) : 287 - 301
  • [36] Higher-Order Regularized Kernel Canonical Correlation Analysis
    Alam, Md. Ashad
    Fukumizu, Kenji
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2015, 29 (04)
  • [37] An improvement of seasonal climate prediction by regularized canonical correlation analysis
    Lim, Yaeji
    Jo, Seongil
    Lee, Jaeyong
    Oh, Hee-Seok
    Kang, Hyun-Suk
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2012, 32 (10) : 1503 - 1512
  • [38] Revisiting Deep Generalized Canonical Correlation Analysis
    Karakasis, Paris A.
    Sidiropoulos, Nicholas D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 4392 - 4406
  • [39] Generalized canonical correlation analysis with missing values
    van de Velden, Michel
    Takane, Yoshio
    COMPUTATIONAL STATISTICS, 2012, 27 (03) : 551 - 571
  • [40] Generalized canonical correlation analysis with missing values
    Michel van de Velden
    Yoshio Takane
    Computational Statistics, 2012, 27 : 551 - 571