Regularized Multiple-Set Canonical Correlation Analysis

被引:34
|
作者
Takane, Yoshio [1 ]
Hwang, Heungsun
Abdi, Herve [2 ]
机构
[1] McGill Univ, Dept Psychol, Montreal, PQ H3A 1B1, Canada
[2] Univ Texas Dallas, Richardson, TX 75083 USA
基金
加拿大自然科学与工程研究理事会;
关键词
information integration; prior information; ridge regression; generalized singular value decomposition (GSVD); G-fold cross validation; permutation tests; the Bootstrap method; multiple correspondence analysis (MCA);
D O I
10.1007/s11336-008-9065-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multiple-set canonical correlation analysis (Generalized CANO or GCANO for short) is an important technique because it subsumes a number of interesting multivariate data analysis techniques as special cases. More recently, it has also been recognized as an important technique for integrating information from multiple sources. In this paper, we present a simple regularization technique for GCANO and demonstrate its usefulness. Regularization is deemed important as a way of supplementing insufficient data by prior knowledge, and/or of incorporating certain desirable properties in the estimates of parameters in the model. Implications of regularized GCANO for multiple correspondence analysis are also discussed. Examples are given to illustrate the use of the proposed technique.
引用
收藏
页码:753 / 775
页数:23
相关论文
共 50 条
  • [1] Regularized Multiple-Set Canonical Correlation Analysis
    Yoshio Takane
    Heungsun Hwang
    Hervé Abdi
    [J]. Psychometrika, 2008, 73 : 753 - 775
  • [2] Functional Multiple-Set Canonical Correlation Analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    [J]. PSYCHOMETRIKA, 2012, 77 (01) : 48 - 64
  • [3] Functional Multiple-Set Canonical Correlation Analysis
    Heungsun Hwang
    Kwanghee Jung
    Yoshio Takane
    Todd S. Woodward
    [J]. Psychometrika, 2012, 77 : 48 - 64
  • [4] A unified approach to multiple-set canonical correlation analysis and principal components analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2013, 66 (02): : 308 - 321
  • [5] Canonical correlation analysis of principal component scores for multiple-set random vectors
    Ogura, Toru
    Murakami, Hidetoshi
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2020, 13 (01) : 47 - 74
  • [6] A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation
    Choi, Ji Yeh
    Hwang, Heungsun
    Yamamoto, Michio
    Jung, Kwanghee
    Woodward, Todd S.
    [J]. PSYCHOMETRIKA, 2017, 82 (02) : 427 - 441
  • [7] A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation
    Ji Yeh Choi
    Heungsun Hwang
    Michio Yamamoto
    Kwanghee Jung
    Todd S. Woodward
    [J]. Psychometrika, 2017, 82 : 427 - 441
  • [8] Asymptotic theory of multiple-set linear canonical analysis
    Nkiet G.M.
    [J]. Mathematical Methods of Statistics, 2017, 26 (3) : 196 - 211
  • [9] MULTIPLE-SET CANONICAL-ANALYSIS - AN APPLICATION TO FORESTRY GENETICS
    DELAREGUERA, PAF
    MARRIOTT, FHC
    BURLEY, J
    [J]. BIOMETRICS, 1988, 44 (03) : 875 - 880
  • [10] Robustifying multiple-set linear canonical analysis with S-estimator
    Bivigou, Ulrich Djemby
    Nkiet, Guy Martial
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) : 571 - 576