Functional Multiple-Set Canonical Correlation Analysis

被引:0
|
作者
Heungsun Hwang
Kwanghee Jung
Yoshio Takane
Todd S. Woodward
机构
[1] McGill University,Department of Psychology
[2] McGill University,undefined
[3] University of British Columbia and British Columbia Mental Health and Addiction Research Institute,undefined
来源
Psychometrika | 2012年 / 77卷
关键词
functional data; multiple-set canonical correlation analysis; functional canonical correlation analysis; functional magnetic resonance imaging data;
D O I
暂无
中图分类号
学科分类号
摘要
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the method solves a matrix eigen-analysis problem through the adoption of a basis expansion approach to approximating data and weight functions. We apply the proposed method to functional magnetic resonance imaging (fMRI) data to identify networks of neural activity that are commonly activated across subjects while carrying out a working memory task.
引用
收藏
页码:48 / 64
页数:16
相关论文
共 50 条
  • [1] Functional Multiple-Set Canonical Correlation Analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    [J]. PSYCHOMETRIKA, 2012, 77 (01) : 48 - 64
  • [2] Regularized Multiple-Set Canonical Correlation Analysis
    Takane, Yoshio
    Hwang, Heungsun
    Abdi, Herve
    [J]. PSYCHOMETRIKA, 2008, 73 (04) : 753 - 775
  • [3] Regularized Multiple-Set Canonical Correlation Analysis
    Yoshio Takane
    Heungsun Hwang
    Hervé Abdi
    [J]. Psychometrika, 2008, 73 : 753 - 775
  • [4] A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation
    Choi, Ji Yeh
    Hwang, Heungsun
    Yamamoto, Michio
    Jung, Kwanghee
    Woodward, Todd S.
    [J]. PSYCHOMETRIKA, 2017, 82 (02) : 427 - 441
  • [5] A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation
    Ji Yeh Choi
    Heungsun Hwang
    Michio Yamamoto
    Kwanghee Jung
    Todd S. Woodward
    [J]. Psychometrika, 2017, 82 : 427 - 441
  • [6] A unified approach to multiple-set canonical correlation analysis and principal components analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2013, 66 (02): : 308 - 321
  • [7] Canonical correlation analysis of principal component scores for multiple-set random vectors
    Ogura, Toru
    Murakami, Hidetoshi
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2020, 13 (01) : 47 - 74
  • [8] Asymptotic theory of multiple-set linear canonical analysis
    Nkiet G.M.
    [J]. Mathematical Methods of Statistics, 2017, 26 (3) : 196 - 211
  • [9] MULTIPLE-SET CANONICAL-ANALYSIS - AN APPLICATION TO FORESTRY GENETICS
    DELAREGUERA, PAF
    MARRIOTT, FHC
    BURLEY, J
    [J]. BIOMETRICS, 1988, 44 (03) : 875 - 880
  • [10] Robustifying multiple-set linear canonical analysis with S-estimator
    Bivigou, Ulrich Djemby
    Nkiet, Guy Martial
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) : 571 - 576