Asymptotic theory of multiple-set linear canonical analysis

被引:4
|
作者
Nkiet G.M. [1 ]
机构
[1] Univ. des Sci. et Techn. de Masuku, Départ. de Math. et Inform., Franceville
关键词
asymptotic study; multiple set canonical analysis; noncorrelation tests;
D O I
10.3103/S1066530717030036
中图分类号
学科分类号
摘要
This paper deals with asymptotics for multiple-set linear canonical analysis (MSLCA). A definition of this analysis, that adapts the classical one to the context of Euclidean random variables, is given and properties of the related canonical coefficients are derived. Then, estimators of the MSLCA’s elements, based on empirical covariance operators, are proposed and asymptotics for these estimators is obtained. More precisely, we prove their consistency and we obtain asymptotic normality for the estimator of the operator that gives MSLCA, and also for the estimator of the vector of canonical coefficients. These results are then used to obtain a test for mutual non-correlation between the involved Euclidean random variables. © 2017, Allerton Press, Inc.
引用
下载
收藏
页码:196 / 211
页数:15
相关论文
共 50 条
  • [1] Robustifying multiple-set linear canonical analysis with S-estimator
    Bivigou, Ulrich Djemby
    Nkiet, Guy Martial
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) : 571 - 576
  • [2] Regularized Multiple-Set Canonical Correlation Analysis
    Takane, Yoshio
    Hwang, Heungsun
    Abdi, Herve
    PSYCHOMETRIKA, 2008, 73 (04) : 753 - 775
  • [3] Functional Multiple-Set Canonical Correlation Analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    PSYCHOMETRIKA, 2012, 77 (01) : 48 - 64
  • [4] Functional Multiple-Set Canonical Correlation Analysis
    Heungsun Hwang
    Kwanghee Jung
    Yoshio Takane
    Todd S. Woodward
    Psychometrika, 2012, 77 : 48 - 64
  • [5] Regularized Multiple-Set Canonical Correlation Analysis
    Yoshio Takane
    Heungsun Hwang
    Hervé Abdi
    Psychometrika, 2008, 73 : 753 - 775
  • [6] Robust multiple-set linear canonical analysis based on minimum covariance determinant estimator
    Djemby Bivigou, Ulrich
    Nkiet, Guy Martial
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (22) : 7783 - 7800
  • [7] MULTIPLE-SET CANONICAL-ANALYSIS - AN APPLICATION TO FORESTRY GENETICS
    DELAREGUERA, PAF
    MARRIOTT, FHC
    BURLEY, J
    BIOMETRICS, 1988, 44 (03) : 875 - 880
  • [8] A unified approach to multiple-set canonical correlation analysis and principal components analysis
    Hwang, Heungsun
    Jung, Kwanghee
    Takane, Yoshio
    Woodward, Todd S.
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2013, 66 (02): : 308 - 321
  • [9] Canonical correlation analysis of principal component scores for multiple-set random vectors
    Ogura, Toru
    Murakami, Hidetoshi
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2020, 13 (01) : 47 - 74
  • [10] A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation
    Choi, Ji Yeh
    Hwang, Heungsun
    Yamamoto, Michio
    Jung, Kwanghee
    Woodward, Todd S.
    PSYCHOMETRIKA, 2017, 82 (02) : 427 - 441