A New Universal Cycle for Permutations

被引:0
|
作者
Dennis Wong
机构
[1] Wenzhou-Kean University,
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Universal cycles; Permutations; de Bruijn sequences; Gray codes;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a novel notation, the relaxed shorthand notation, to encode permutations. We then present a simple shift rule that exhaustively lists out each of the permutations exactly once. The shift rule induces a cyclic Gray code for permutations where successive strings differ by a rotation or a shift. By concatenating the first symbol of each string in the listing, we produce a universal cycle for permutations in relaxed shorthand notation. We also prove that the universal cycle can be constructed in O(1)-amortized time per symbol using O(n) space.
引用
收藏
页码:1393 / 1399
页数:6
相关论文
共 50 条
  • [1] A New Universal Cycle for Permutations
    Wong, Dennis
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1393 - 1399
  • [2] UNIVERSAL GRAPHS AND UNIVERSAL PERMUTATIONS
    Atminas, Aistis
    Lozin, Vadim V.
    Kitaev, Sergey
    Valyuzhenich, Alexandr
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (04)
  • [3] Universal layered permutations
    Albert, Michael
    Engen, Michael
    Pantone, Jay
    Vatter, Vincent
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [4] Universal cycles for permutations
    Johnson, J. Robert
    [J]. DISCRETE MATHEMATICS, 2009, 309 (17) : 5264 - 5270
  • [5] An Explicit Universal Cycle for the (n-1)-Permutations of an n-Set
    Ruskey, Frank
    Williams, Aaron
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2010, 6 (03)
  • [6] A Universal Cycle for Strings with Fixed-Content (Which Are Also Known as Multiset Permutations)
    Sawada, J.
    Williams, A.
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 599 - 612
  • [7] Shortened universal cycles for permutations
    Kirsch, Rachel
    Lidicky, Bernard
    Sibley, Clare
    Sprangel, Elizabeth
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 324 : 219 - 228
  • [8] Shorthand Universal Cycles for Permutations
    Holroyd, Alexander E.
    Ruskey, Frank
    Williams, Aaron
    [J]. ALGORITHMICA, 2012, 64 (02) : 215 - 245
  • [9] Shorthand Universal Cycles for Permutations
    Alexander E. Holroyd
    Frank Ruskey
    Aaron Williams
    [J]. Algorithmica, 2012, 64 : 215 - 245
  • [10] Stirling permutations, cycle structure of permutations and perfect matchings
    Ma, Shi-Mei
    Yeh, Yeong-Nan
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):