Shortened universal cycles for permutations

被引:0
|
作者
Kirsch, Rachel [1 ]
Lidicky, Bernard [2 ]
Sibley, Clare [3 ]
Sprangel, Elizabeth [2 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
[2] Iowa State Univ, Dept Math, Ames, IA USA
[3] Rice Univ, Houston, TX USA
关键词
Universal cycles; Permutation; Compression; DE-BRUIJN SEQUENCES; WORDS;
D O I
10.1016/j.dam.2022.09.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kitaev et al. (2019) described how to shorten universal words for permutations, to length n! + n - 1 - i(n - 1) for any i is an element of [(n - 2)!], by introducing incomparable elements. They conjectured that it is also possible to use incomparable elements to shorten universal cycles for permutations to length n! - i(n - 1) for any i is an element of [(n - 2)!]. In this note we prove their conjecture. The proof is constructive, and, on the way, we also show a new method for constructing universal cycles for permutations.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [1] Universal cycles for permutations
    Johnson, J. Robert
    [J]. DISCRETE MATHEMATICS, 2009, 309 (17) : 5264 - 5270
  • [2] Shorthand Universal Cycles for Permutations
    Holroyd, Alexander E.
    Ruskey, Frank
    Williams, Aaron
    [J]. ALGORITHMICA, 2012, 64 (02) : 215 - 245
  • [3] Shorthand Universal Cycles for Permutations
    Alexander E. Holroyd
    Frank Ruskey
    Aaron Williams
    [J]. Algorithmica, 2012, 64 : 215 - 245
  • [4] Hamiltonicity of digraphs for universal cycles of permutations
    Isaak, G
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) : 801 - 805
  • [5] Equivalence class universal cycles for permutations
    Hurlbert, G
    Isaak, G
    [J]. DISCRETE MATHEMATICS, 1996, 149 (1-3) : 123 - 129
  • [6] Faster Generation of Shorthand Universal Cycles for Permutations
    Holroyd, Alexander
    Ruskey, Frank
    Williams, Aaron
    [J]. COMPUTING AND COMBINATORICS, 2010, 6196 : 298 - +
  • [7] On a Greedy Algorithm to Construct Universal Cycles for Permutations
    Gao, Alice L. L.
    Kitaev, Sergey
    Steiner, Wolfgang
    Zhang, Philip B.
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (01) : 61 - 72
  • [8] Enumerations of universal cycles for k-permutations
    Chang, Zuling
    Xue, Jie
    [J]. DISCRETE MATHEMATICS, 2022, 345 (09)
  • [9] On a family of universal cycles for multi-dimensional permutations
    Kitaev, Sergey
    Qiu, Dun
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 359 : 310 - 320
  • [10] UNIVERSAL CYCLES OF K-SUBSETS AND K-PERMUTATIONS
    JACKSON, BW
    [J]. DISCRETE MATHEMATICS, 1993, 117 (1-3) : 141 - 150