Shorthand Universal Cycles for Permutations

被引:22
|
作者
Holroyd, Alexander E. [2 ]
Ruskey, Frank [1 ]
Williams, Aaron [3 ]
机构
[1] Univ Victoria, Dept Comp Sci, Victoria, BC, Canada
[2] Microsoft Res, Redmond, WA USA
[3] Carleton Univ, Dept Math, Ottawa, ON K1S 5B6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Ucycles; Gray codes; Cayley graphs; Permutohedron; Algorithms; SEQUENCES;
D O I
10.1007/s00453-011-9544-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The set of permutations of aOE (c) n >={1,aEuro broken vertical bar,n} in one-line notation is I (n). The shorthand encoding of a (1)a <-a (n) aI (n) is a (1)a <-a (n-1). A shorthand universal cycle for permutations (SP-cycle) is a circular string of length n! whose substrings of length n-1 are the shorthand encodings of I (n). When an SP-cycle is decoded, the order of I (n) is a Gray code in which successive permutations differ by the prefix-rotation sigma (i) =(1 2 a <- i) for ia{n-1,n}. Thus, SP-cycles can be represented by n! bits. We investigate SP-cycles with maximum and minimum 'weight' (number of sigma (n-1)s in the Gray code). An SP-cycle n a n ba <-n z is 'periodic' if its 'sub-permutations' a,b,aEuro broken vertical bar,z equal I (n-1). We prove that periodic min-weight SP-cycles correspond to spanning trees of the (n-1)-permutohedron. We provide two constructions: B(n) and C(n). In B(n) the spanning trees use 'half-hunts' from bell-ringing, and in C(n) the sub-permutations use cool-lex order by Williams (SODA, 987-996, 2009). Algorithmic results are: (1) memoryless decoding of B(n) and C(n), (2) O((n-1)!)-time generation of B(n) and C(n) using sub-permutations, (3) loopless generation of B(n)'s binary representation n bits at a time, and (4) O(n+nu(n))-time ranking of B(n)'s permutations where nu(n) is the cost of computing a permutation's inversion vector. Results (1)-(4) improve on those for the previous SP-cycle construction D(n) by Ruskey and Williams (ACM Trans. Algorithms 6(3):Art. 45, 2010), which we characterize here using 'recycling'.
引用
收藏
页码:215 / 245
页数:31
相关论文
共 50 条
  • [1] Shorthand Universal Cycles for Permutations
    Alexander E. Holroyd
    Frank Ruskey
    Aaron Williams
    [J]. Algorithmica, 2012, 64 : 215 - 245
  • [2] Faster Generation of Shorthand Universal Cycles for Permutations
    Holroyd, Alexander
    Ruskey, Frank
    Williams, Aaron
    [J]. COMPUTING AND COMBINATORICS, 2010, 6196 : 298 - +
  • [3] Universal cycles for permutations
    Johnson, J. Robert
    [J]. DISCRETE MATHEMATICS, 2009, 309 (17) : 5264 - 5270
  • [4] Shortened universal cycles for permutations
    Kirsch, Rachel
    Lidicky, Bernard
    Sibley, Clare
    Sprangel, Elizabeth
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 324 : 219 - 228
  • [5] Hamiltonicity of digraphs for universal cycles of permutations
    Isaak, G
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) : 801 - 805
  • [6] Equivalence class universal cycles for permutations
    Hurlbert, G
    Isaak, G
    [J]. DISCRETE MATHEMATICS, 1996, 149 (1-3) : 123 - 129
  • [7] On a Greedy Algorithm to Construct Universal Cycles for Permutations
    Gao, Alice L. L.
    Kitaev, Sergey
    Steiner, Wolfgang
    Zhang, Philip B.
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2019, 30 (01) : 61 - 72
  • [8] Enumerations of universal cycles for k-permutations
    Chang, Zuling
    Xue, Jie
    [J]. DISCRETE MATHEMATICS, 2022, 345 (09)
  • [9] On a family of universal cycles for multi-dimensional permutations
    Kitaev, Sergey
    Qiu, Dun
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 359 : 310 - 320
  • [10] UNIVERSAL ENGINEERING SHORTHAND
    POMEROY, AF
    [J]. PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1952, 40 (07): : 771 - 771