UNIVERSAL GRAPHS AND UNIVERSAL PERMUTATIONS

被引:2
|
作者
Atminas, Aistis [1 ,2 ]
Lozin, Vadim V. [1 ,2 ]
Kitaev, Sergey [3 ]
Valyuzhenich, Alexandr [4 ]
机构
[1] Univ Warwick, DIMAP, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Univ Strathclyde, Dept Comp & Informat Sci, Glasgow G1 1XH, Lanark, Scotland
[4] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
英国工程与自然科学研究理事会;
关键词
Universal graphs; bipartite permutation graphs; split permutation graphs; 321-avoiding permutations;
D O I
10.1142/S1793830913500389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a family of graphs and Xn the set of n-vertex graphs in X. A graph U(n) containing all graphs from Xn as induced subgraphs is called n-universal for X. Moreover, we say that U(n) is a proper n-universal graph for X if it belongs to X. In the present paper, we construct a proper n-universal graph for the class of split permutation graphs. Our solution includes two ingredients: a proper universal 321-avoiding permutation and a bijection between 321-avoiding permutations and symmetric split permutation graphs. The n-universal split permutation graph constructed in this paper has 4n(3) vertices, which means that this construction is order-optimal.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Universal layered permutations
    Albert, Michael
    Engen, Michael
    Pantone, Jay
    Vatter, Vincent
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [2] Universal cycles for permutations
    Johnson, J. Robert
    [J]. DISCRETE MATHEMATICS, 2009, 309 (17) : 5264 - 5270
  • [3] UNIVERSAL GRAPHS AND INDUCED-UNIVERSAL GRAPHS
    CHUNG, FRK
    [J]. JOURNAL OF GRAPH THEORY, 1990, 14 (04) : 443 - 454
  • [4] A New Universal Cycle for Permutations
    Dennis Wong
    [J]. Graphs and Combinatorics, 2017, 33 : 1393 - 1399
  • [5] Shortened universal cycles for permutations
    Kirsch, Rachel
    Lidicky, Bernard
    Sibley, Clare
    Sprangel, Elizabeth
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 324 : 219 - 228
  • [6] Shorthand Universal Cycles for Permutations
    Holroyd, Alexander E.
    Ruskey, Frank
    Williams, Aaron
    [J]. ALGORITHMICA, 2012, 64 (02) : 215 - 245
  • [7] Shorthand Universal Cycles for Permutations
    Alexander E. Holroyd
    Frank Ruskey
    Aaron Williams
    [J]. Algorithmica, 2012, 64 : 215 - 245
  • [8] A New Universal Cycle for Permutations
    Wong, Dennis
    [J]. GRAPHS AND COMBINATORICS, 2017, 33 (06) : 1393 - 1399
  • [9] Equivalence class universal cycles for permutations
    Hurlbert, G
    Isaak, G
    [J]. DISCRETE MATHEMATICS, 1996, 149 (1-3) : 123 - 129
  • [10] Hamiltonicity of digraphs for universal cycles of permutations
    Isaak, G
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (06) : 801 - 805