A New Universal Cycle for Permutations

被引:0
|
作者
Dennis Wong
机构
[1] Wenzhou-Kean University,
来源
Graphs and Combinatorics | 2017年 / 33卷
关键词
Universal cycles; Permutations; de Bruijn sequences; Gray codes;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a novel notation, the relaxed shorthand notation, to encode permutations. We then present a simple shift rule that exhaustively lists out each of the permutations exactly once. The shift rule induces a cyclic Gray code for permutations where successive strings differ by a rotation or a shift. By concatenating the first symbol of each string in the listing, we produce a universal cycle for permutations in relaxed shorthand notation. We also prove that the universal cycle can be constructed in O(1)-amortized time per symbol using O(n) space.
引用
收藏
页码:1393 / 1399
页数:6
相关论文
共 50 条
  • [41] More constructions of n-cycle permutations
    Niu, Tailin
    Li, Kangquan
    Qu, Longjiang
    Sun, Bing
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 88
  • [42] The order of large random permutations with cycle weights
    Storm, Julia
    Zeindler, Dirk
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 34
  • [43] Spatial random permutations with small cycle weights
    Volker Betz
    Daniel Ueltschi
    Probability Theory and Related Fields, 2011, 149 : 191 - 222
  • [44] Fixed points and cycle structure of random permutations
    Mukherjee, Sumit
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [45] Permutations with restricted cycle structure and an algorithmic application
    Beals, R
    Leedham-Green, CR
    Niemeyer, AC
    Praeger, CE
    Seress, A
    COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (05): : 447 - 464
  • [46] ON THE NUMBER AND CYCLE STRUCTURE OF THE PERMUTATIONS IN CERTAIN CLASSES
    PAVLOV, AI
    MATHEMATICS OF THE USSR-SBORNIK, 1984, 124 (3-4): : 521 - 540
  • [47] Spatial random permutations with small cycle weights
    Betz, Volker
    Ueltschi, Daniel
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 149 (1-2) : 191 - 222
  • [48] Sorting permutations by reversals and Eulerian cycle decompositions
    Caprara, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 91 - 110
  • [49] Finite Cycle Gibbs Measures on Permutations of Zd
    Armendariz, Ines
    Ferrari, Pablo A.
    Groisman, Pablo
    Leonardi, Florencia
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) : 1213 - 1233
  • [50] UNIVERSAL CYCLES OF K-SUBSETS AND K-PERMUTATIONS
    JACKSON, BW
    DISCRETE MATHEMATICS, 1993, 117 (1-3) : 141 - 150