We consider the implicit discretization of Nagumo equation on finite lattices and show that its variational formulation corresponds in various parameter settings to convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive conditions under which the implicit discretization yields multiple solutions. Interestingly, for certain parameters we show nonuniqueness for arbitrarily small discretization steps. Finally, we provide a simple example showing that the nonuniqueness can lead to complex dynamics in which the number of bounded solutions grows exponentially in time iterations, which in turn implies infinite number of global trajectories.
机构:
Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, ItalyUniv Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
Battaglia, Luca
Cozzi, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat Federigo Enriques, I-20133 Milan, ItalyUniv Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
Cozzi, Matteo
Fernandez, Antonio j.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC, Inst Ciencias Matemat, Madrid 28049, Spain
Univ Autonoma Madrid, Dept Matemat, Ciudad Univ Cantoblanco, Madrid 28049, SpainUniv Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
Fernandez, Antonio j.
Pistoia, Angela
论文数: 0引用数: 0
h-index: 0
机构:
Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, ItalyUniv Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy