NONUNIQUENESS FOR THE NONLOCAL LIOUVILLE EQUATION IN R AND APPLICATIONS

被引:1
|
作者
Battaglia, Luca [1 ]
Cozzi, Matteo [2 ]
Fernandez, Antonio j. [3 ,4 ]
Pistoia, Angela [5 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Univ Milan, Dipartimento Matemat Federigo Enriques, I-20133 Milan, Italy
[3] CSIC, Inst Ciencias Matemat, Madrid 28049, Spain
[4] Univ Autonoma Madrid, Dept Matemat, Ciudad Univ Cantoblanco, Madrid 28049, Spain
[5] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, Italy
基金
欧洲研究理事会;
关键词
Liouville type equation; half-Laplacian; multiplicity results; Lyapunov--Schmidt reduction; Brouwer degree;
D O I
10.1137/22M1538004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct multiple solutions to the nonlocal Liouville equation (-Delta)(1/2)u = K(x)e(u) in R . More precisely, for K of the form K(x) = 1 + epsilon kappa(x) with epsilon is an element of (0,1) small and kappa is an element of C-1,C-alpha(R) boolean AND L-infinity(R) for some alpha > 0, we prove the existence of multiple solutions to the above equation bifurcating from the bubbles. These solutions provide examples of flat metrics in the half-plane with prescribed geodesic curvature K(x) on its boundary. Furthermore, they imply the existence of multiple ground state soliton solutions for the Calogero-Moser derivative nonlinear Schr & ouml;dinger equation.
引用
收藏
页码:4816 / 4842
页数:27
相关论文
共 50 条