NONUNIQUENESS FOR THE NONLOCAL LIOUVILLE EQUATION IN R AND APPLICATIONS

被引:1
|
作者
Battaglia, Luca [1 ]
Cozzi, Matteo [2 ]
Fernandez, Antonio j. [3 ,4 ]
Pistoia, Angela [5 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
[2] Univ Milan, Dipartimento Matemat Federigo Enriques, I-20133 Milan, Italy
[3] CSIC, Inst Ciencias Matemat, Madrid 28049, Spain
[4] Univ Autonoma Madrid, Dept Matemat, Ciudad Univ Cantoblanco, Madrid 28049, Spain
[5] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, Italy
基金
欧洲研究理事会;
关键词
Liouville type equation; half-Laplacian; multiplicity results; Lyapunov--Schmidt reduction; Brouwer degree;
D O I
10.1137/22M1538004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct multiple solutions to the nonlocal Liouville equation (-Delta)(1/2)u = K(x)e(u) in R . More precisely, for K of the form K(x) = 1 + epsilon kappa(x) with epsilon is an element of (0,1) small and kappa is an element of C-1,C-alpha(R) boolean AND L-infinity(R) for some alpha > 0, we prove the existence of multiple solutions to the above equation bifurcating from the bubbles. These solutions provide examples of flat metrics in the half-plane with prescribed geodesic curvature K(x) on its boundary. Furthermore, they imply the existence of multiple ground state soliton solutions for the Calogero-Moser derivative nonlinear Schr & ouml;dinger equation.
引用
收藏
页码:4816 / 4842
页数:27
相关论文
共 50 条
  • [31] LIOUVILLE EQUATION .5. THE FULL SYMMETRIES OF R(-1)-POTENTIALS
    DEHGHANI, MH
    SOBOUTI, Y
    ASTRONOMY & ASTROPHYSICS, 1993, 275 (01) : 91 - 95
  • [32] Nonlocal representation of the sl(2, R) algebra for the Chazy equation
    Jamal, Sameerah
    Leach, P. G. L.
    Paliathanasis, Andronikos
    QUAESTIONES MATHEMATICAE, 2019, 42 (01) : 125 - 133
  • [33] The periodic principal eigenvalues with applications to the nonlocal dispersal logistic equation
    Sun, Jian-Wen
    Li, Wan-Tong
    Wang, Zhi-Cheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 934 - 971
  • [34] A compact embedding result and its applications to a nonlocal Schrodinger equation
    Gu, Guangze
    Zhang, Xu
    Zhao, Fukun
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (02) : 707 - 715
  • [35] Global existence and nonuniqueness of a nonlinear degenerate equation
    Qi, Yuan-Wei
    Nonlinear Analysis, Theory, Methods and Applications, 1998, 31 (1-2): : 117 - 136
  • [36] NONUNIQUENESS OF SPIN-1/2 EQUATION
    CAPRI, AZ
    PHYSICAL REVIEW, 1969, 187 (05): : 1811 - +
  • [37] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Weera Yukunthorn
    Sotiris K Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2014
  • [39] Instability and Nonuniqueness for the b-Novikov Equation
    Himonas, A. Alexandrou
    Holliman, Curtis
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (04)
  • [40] Nonlinear fractional Caputo-Langevin equation with nonlocal Riemann-Liouville fractional integral conditions
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,