Multichromatic travelling waves for lattice Nagumo equations

被引:12
|
作者
Hupkes, Hermen Jan [1 ]
Morelli, Leonardo [1 ]
Stehlik, Petr [2 ,3 ]
Svigler, Vladimir [2 ,3 ]
机构
[1] Leiden Univ, Math Inst, POB 9512, NL-2300 RA Leiden, Netherlands
[2] Univ West Bohemia, Fac Appl Sci, Dept Math, Univ 8, Plzen 30614, Czech Republic
[3] Univ West Bohemia, Fac Appl Sci, NTIS, Univ 8, Plzen 30614, Czech Republic
关键词
Reaction-diffusion equations; Lattice differential equations; Travelling waves; Wave collisions; DISCRETE NAGUMO; DIFFUSION; STABILITY; FRONTS; MODEL; PROPAGATION; DYNAMICS; FAILURE;
D O I
10.1016/j.amc.2019.05.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss multichromatic front solutions to the bistable Nagumo lattice differential equation. Such fronts connect the stable spatially homogeneous equilibria with spatially heterogeneous n-periodic equilibria and hence are not monotonic like the standard monochromatic fronts. In contrast to the bichromatic case, our results show that these multichromatic fronts can disappear and reappear as the diffusion coefficient is increased. In addition, these multichromatic waves can travel in parameter regimes where the monochromatic fronts are also free to travel. This leads to intricate collision processes where an incoming multichromatic wave can reverse its direction and turn into a monochromatic wave. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:430 / 452
页数:23
相关论文
共 50 条
  • [1] Bichromatic Travelling Waves for Lattice Nagumo Equations
    Hupkes, Hermen Jan
    Morelli, Leonardo
    Stehlik, Petr
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (02): : 973 - 1014
  • [2] Singular perturbation of N-front travelling waves in the Fitzhugh-Nagumo equations
    Bell, DC
    Deng, B
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) : 515 - 541
  • [3] TRAVELLING WAVES IN THE LATTICE EPIDEMIC MODEL
    Yu, Zhixian
    Yuan, Rong
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [4] Travelling waves in lattice dynamical systems
    Pankov, AA
    Pflüger, K
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (14) : 1223 - 1235
  • [5] HETEROCLINIC WAVES OF THE FITZHUGH-NAGUMO EQUATIONS
    PAUWELUSSEN, JP
    [J]. MATHEMATICAL BIOSCIENCES, 1982, 58 (02) : 217 - 242
  • [6] Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations
    Hesoun, Jakub
    Stehlik, Petr
    Volek, Jonas
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
  • [7] Travelling Waves in Hyperbolic Chemotaxis Equations
    Chuan Xue
    Hyung Ju Hwang
    Kevin J. Painter
    Radek Erban
    [J]. Bulletin of Mathematical Biology, 2011, 73 : 1695 - 1733
  • [8] Travelling Waves in Hyperbolic Chemotaxis Equations
    Xue, Chuan
    Hwang, Hyung Ju
    Painter, Kevin J.
    Erban, Radek
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (08) : 1695 - 1733
  • [9] Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations
    Jakub Hesoun
    Petr Stehlík
    Jonáš Volek
    [J]. Qualitative Theory of Dynamical Systems, 2024, 23
  • [10] Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line
    Van Gorder, Robert A.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (01) : 5 - 11