Bichromatic Travelling Waves for Lattice Nagumo Equations

被引:11
|
作者
Hupkes, Hermen Jan [1 ]
Morelli, Leonardo [1 ]
Stehlik, Petr [2 ,3 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
[2] Univ West Bohemia, Fac Appl Sci, Dept Math, Univ 8, Plzen 30614, Czech Republic
[3] Univ West Bohemia, Fac Appl Sci, NTIS, Univ 8, Plzen 30614, Czech Republic
来源
关键词
reaction-diffusion equation; lattice differential equation; travelling waves; nonlinear algebraic equations; CELLULAR NEURAL-NETWORKS; DISCRETE NAGUMO; PROPAGATION; DIFFUSION; SYSTEMS; MOTION; STABILITY; CRYSTAL; FAILURE; FRONTS;
D O I
10.1137/18M1189221
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss bichromatic (two-color) front solutions to the bistable Nagumo lattice differential equation. Such fronts connect the stable spatially homogeneous equilibria with spatially heterogeneous 2-periodic equilibria and hence are not monotonic like the standard monochromatic fronts. We provide explicit criteria that can determine whether or not these fronts are stationary and show that the bichromatic fronts can travel in parameter regimes where the monochromatic fronts are pinned. The presence of these bichromatic waves allows the two stable homogeneous equilibria to spread out through the spatial domain towards each other, buffered by a shrinking intermediate zone in which the periodic pattern is visible.
引用
收藏
页码:973 / 1014
页数:42
相关论文
共 50 条
  • [1] Multichromatic travelling waves for lattice Nagumo equations
    Hupkes, Hermen Jan
    Morelli, Leonardo
    Stehlik, Petr
    Svigler, Vladimir
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 : 430 - 452
  • [2] Singular perturbation of N-front travelling waves in the Fitzhugh-Nagumo equations
    Bell, DC
    Deng, B
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) : 515 - 541
  • [3] TRAVELLING WAVES IN THE LATTICE EPIDEMIC MODEL
    Yu, Zhixian
    Yuan, Rong
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [4] Travelling waves in lattice dynamical systems
    Pankov, AA
    Pflüger, K
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (14) : 1223 - 1235
  • [5] HETEROCLINIC WAVES OF THE FITZHUGH-NAGUMO EQUATIONS
    PAUWELUSSEN, JP
    [J]. MATHEMATICAL BIOSCIENCES, 1982, 58 (02) : 217 - 242
  • [6] Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations
    Hesoun, Jakub
    Stehlik, Petr
    Volek, Jonas
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
  • [7] Travelling Waves in Hyperbolic Chemotaxis Equations
    Chuan Xue
    Hyung Ju Hwang
    Kevin J. Painter
    Radek Erban
    [J]. Bulletin of Mathematical Biology, 2011, 73 : 1695 - 1733
  • [8] Travelling Waves in Hyperbolic Chemotaxis Equations
    Xue, Chuan
    Hwang, Hyung Ju
    Painter, Kevin J.
    Erban, Radek
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (08) : 1695 - 1733
  • [9] Unbounded Asymmetric Stationary Solutions of Lattice Nagumo Equations
    Jakub Hesoun
    Petr Stehlík
    Jonáš Volek
    [J]. Qualitative Theory of Dynamical Systems, 2024, 23
  • [10] Travelling Waves for a Density Dependent Diffusion Nagumo Equation over the Real Line
    Van Gorder, Robert A.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (01) : 5 - 11