Instability and Nonuniqueness for the b-Novikov Equation

被引:0
|
作者
A. Alexandrou Himonas
Curtis Holliman
机构
[1] University of Notre Dame,Department of Mathematics
[2] The Catholic University of America,Department of Mathematics
来源
关键词
-Novikov equation; Integrable equations; Camassa–Holm-type equations; 2-Peakon solutions; Initial value problem; Well-posedness in Sobolev spaces; Norm inflation and instability; Nonuniqueness; Primary: 35Q53; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
The b-Novikov equation is a one-parameter family of Camassa–Holm-type equations with cubic nonlinearities that possess multipeakon traveling wave solutions and for b=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=3$$\end{document} gives the well known Novikov equation, which is integrable. Here, using appropriate two-peakon solutions, instability and nonuniqueness for the initial value problem of the b-Novikov equation is studied when the initial data belong in Sobolev spaces Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document}, s<3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s < 3/2$$\end{document}, on both the line and the circle. The rectangular region of the bs-plane defined by b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document} and s<3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<3/2$$\end{document} is divided into three subregions. The subregion that is below the line segment s=2-b4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = 2-\frac{b}{4}$$\end{document}, 2<b<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<b < 4$$\end{document}, is characterized by the phenomenon of nonuniqueness. Then, to the right of this subregion the phenomenon of norm inflation occurs, which leads to instability and discontinuity of the solution map. However, on the segment s=2-b4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = 2-\frac{b}{4}$$\end{document}, 2<b<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<b < 4$$\end{document}, either nonuniqueness or discontinuity may occur. All these are proved by constructing appropriate two-peakon solutions with arbitrary small initial size data that collide in arbitrary small time T. These solutions may become arbitrarily large near T. For b≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\le 2$$\end{document}, the two-peakon solutions do not work since there is no collision. Finally, it is well known that for s>3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>3/2$$\end{document} there is well-posedness no matter what is the value of b.
引用
收藏
相关论文
共 50 条
  • [1] Instability and Nonuniqueness for the b-Novikov Equation
    Himonas, A. Alexandrou
    Holliman, Curtis
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (04)
  • [2] Peakon solutions of a b-Novikov equation
    Efstathiou, Aggeliki G.
    Petropoulou, Eugenia N.
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2022, 30 (01): : 541 - 553
  • [3] Novikov equation: Bäcklund transformation and applications
    Hui Mao
    Theoretical and Mathematical Physics, 2021, 206 : 163 - 173
  • [4] On the Solutions of the b-Family of Novikov Equation
    Wang, Tingting
    Han, Xuanxuan
    Lu, Yibin
    SYMMETRY-BASEL, 2021, 13 (10):
  • [5] Instability of H1-stable periodic peakons for the Novikov equation
    Chong, Gezi
    Fu, Ying
    Wang, Hao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 2294 - 2317
  • [6] Spectral instability of peakons for the b-family of Novikov equations
    Deng, Xijun
    Lafortune, Stephane
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 415 : 572 - 588
  • [7] Transverse instability of plane wave soliton solutions of the Novikov-Veselov equation
    Croke, Ryan
    Mueller, Jennifer L.
    Stahel, Andreas
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 71 - 89
  • [8] On the solutions for the Novikov equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2024, 21 (01) : 165 - 188
  • [9] Peakon Solutions of Alice-Bob b-Family Equation and Novikov Equation
    Wang, Jing
    Xiong, Na
    Li, Biao
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [10] W1,∞ instability of H1-stable peakons in the Novikov equation
    Chen, Robin Ming
    Pelinovsky, Dmitry E.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 18 (03) : 173 - 197