Instability and Nonuniqueness for the b-Novikov Equation

被引:0
|
作者
A. Alexandrou Himonas
Curtis Holliman
机构
[1] University of Notre Dame,Department of Mathematics
[2] The Catholic University of America,Department of Mathematics
来源
关键词
-Novikov equation; Integrable equations; Camassa–Holm-type equations; 2-Peakon solutions; Initial value problem; Well-posedness in Sobolev spaces; Norm inflation and instability; Nonuniqueness; Primary: 35Q53; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
The b-Novikov equation is a one-parameter family of Camassa–Holm-type equations with cubic nonlinearities that possess multipeakon traveling wave solutions and for b=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b=3$$\end{document} gives the well known Novikov equation, which is integrable. Here, using appropriate two-peakon solutions, instability and nonuniqueness for the initial value problem of the b-Novikov equation is studied when the initial data belong in Sobolev spaces Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document}, s<3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s < 3/2$$\end{document}, on both the line and the circle. The rectangular region of the bs-plane defined by b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>2$$\end{document} and s<3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<3/2$$\end{document} is divided into three subregions. The subregion that is below the line segment s=2-b4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = 2-\frac{b}{4}$$\end{document}, 2<b<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<b < 4$$\end{document}, is characterized by the phenomenon of nonuniqueness. Then, to the right of this subregion the phenomenon of norm inflation occurs, which leads to instability and discontinuity of the solution map. However, on the segment s=2-b4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s = 2-\frac{b}{4}$$\end{document}, 2<b<4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<b < 4$$\end{document}, either nonuniqueness or discontinuity may occur. All these are proved by constructing appropriate two-peakon solutions with arbitrary small initial size data that collide in arbitrary small time T. These solutions may become arbitrarily large near T. For b≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\le 2$$\end{document}, the two-peakon solutions do not work since there is no collision. Finally, it is well known that for s>3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>3/2$$\end{document} there is well-posedness no matter what is the value of b.
引用
收藏
相关论文
共 50 条
  • [41] THE CAUCHY PROBLEM FOR A GENERALIZED NOVIKOV EQUATION
    Zheng, Rudong
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3503 - 3519
  • [42] Global weak solutions for the Novikov equation
    Wu, Xinglong
    Yin, Zhaoyang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (05)
  • [43] Global existence and nonuniqueness of a nonlinear degenerate equation
    Qi, Yuan-Wei
    Nonlinear Analysis, Theory, Methods and Applications, 1998, 31 (1-2): : 117 - 136
  • [44] The Cauchy problem for the modified Novikov equation
    Hou, Xueping
    Zheng, Yan
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 11
  • [45] GLOBAL DISSIPATIVE SOLUTIONS OF THE NOVIKOV EQUATION
    Zhou, Shouming
    Yang, Li
    Mu, Chunlai
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (06) : 1615 - 1633
  • [46] The Cauchy problem for the integrable Novikov equation
    Yan, Wei
    Li, Yongsheng
    Zhang, Yimin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (01) : 298 - 318
  • [47] NONUNIQUENESS OF SPIN-1/2 EQUATION
    CAPRI, AZ
    PHYSICAL REVIEW, 1969, 187 (05): : 1811 - +
  • [49] NONUNIQUENESS FOR THE NONLOCAL LIOUVILLE EQUATION IN R AND APPLICATIONS
    Battaglia, Luca
    Cozzi, Matteo
    Fernandez, Antonio j.
    Pistoia, Angela
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (05) : 4816 - 4842
  • [50] The global existence and nonuniqueness of a nonlinear degenerate equation
    Qi, YW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) : 117 - 136