High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation

被引:0
|
作者
Minghua Chen
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
Journal of Scientific Computing | 2018年 / 76卷
关键词
Time-tempered fractional Feynman–Kac equation; Tempered fractional substantial derivative; Stability and convergence; First passage time; 35R11; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as SDtγ,λ~G(x,p,t)=Dtγ,λ~G(x,p,t)-λγG(x,p,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {^S\!}D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!=\!D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!-\!\lambda ^\gamma G(x,p,t) \end{aligned}$$\end{document}with λ~=λ+pU(x),p=ρ+Jη,J=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\lambda }=\lambda + pU(x),\, p=\rho +J\eta ,\, J=\sqrt{-1}$$\end{document}, where Dtγ,λ~G(x,p,t)=1Γ(1-γ)∂∂t+λ~∫0tt-z-γe-λ~·(t-z)G(x,p,z)dz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t) =\frac{1}{\varGamma (1-\gamma )} \left[ \frac{\partial }{\partial t}+\widetilde{\lambda } \right] \int _{0}^t{\left( t-z\right) ^{-\gamma }}e^{-\widetilde{\lambda }\cdot (t-z)}{G(x,p,z)}dz, \end{aligned}$$\end{document}and λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, 0<γ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <1$$\end{document}, ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document}, and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is a real number. The designed schemes are unconditionally stable and have the global truncation error O(τ2+h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}(\tau ^2+h^2)$$\end{document}, being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
引用
收藏
页码:867 / 887
页数:20
相关论文
共 50 条
  • [41] Subordination principle and Feynman-Kac formulae for generalized time-fractional evolution equations
    Christian Bender
    Marie Bormann
    Yana A. Butko
    Fractional Calculus and Applied Analysis, 2022, 25 : 1818 - 1836
  • [42] FINITE ELEMENT ALGORITHM BASED ON HIGH-ORDER TIME APPROXIMATION FOR TIME FRACTIONAL CONVECTION-DIFFUSION EQUATION
    Liu, Xin Fei
    Liu, Yang
    Li, Hong
    Fang, Zhi Chao
    Wang, Jin Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (01): : 229 - 249
  • [43] A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions
    Ding, Hengfei
    Li, Changpin
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 81 - 109
  • [44] A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions
    Hengfei Ding
    Changpin Li
    Journal of Scientific Computing, 2019, 80 : 81 - 109
  • [45] Galerkin Finite Element Approximation for Semilinear Stochastic Time-Tempered Fractional Wave Equations with Multiplicative Gaussian Noise and Additive Fractional Gaussian Noise
    Li, Yajing
    Wang, Yejuan
    Deng, Weihua
    Nie, Daxin
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2022, 15 (04): : 1063 - 1098
  • [46] Feynman-Kac equation for anomalous processes with space-and time-dependent forces
    Cairoli, Andrea
    Baule, Adrian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (16)
  • [47] Uniform Convergence of V-cycle Multigrid Algorithms for Two-Dimensional Fractional Feynman–Kac Equation
    Minghua Chen
    Weihua Deng
    Stefano Serra-Capizzano
    Journal of Scientific Computing, 2018, 74 : 1034 - 1059
  • [48] Local discontinuous Galerkin methods for the time tempered fractional diffusion equation
    Sun, Xiaorui
    Li, Can
    Zhao, Fengqun
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 365
  • [49] Lattice Boltzmann method for tempered time-fractional diffusion equation
    Ren, Junjie
    Song, Jie
    Lei, Hao
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [50] Fast high order difference schemes for the time fractional telegraph equation
    Liang, Yuxiang
    Yao, Zhongsheng
    Wang, Zhibo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (01) : 154 - 172