High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation

被引:0
|
作者
Minghua Chen
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
Journal of Scientific Computing | 2018年 / 76卷
关键词
Time-tempered fractional Feynman–Kac equation; Tempered fractional substantial derivative; Stability and convergence; First passage time; 35R11; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as SDtγ,λ~G(x,p,t)=Dtγ,λ~G(x,p,t)-λγG(x,p,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {^S\!}D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!=\!D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!-\!\lambda ^\gamma G(x,p,t) \end{aligned}$$\end{document}with λ~=λ+pU(x),p=ρ+Jη,J=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\lambda }=\lambda + pU(x),\, p=\rho +J\eta ,\, J=\sqrt{-1}$$\end{document}, where Dtγ,λ~G(x,p,t)=1Γ(1-γ)∂∂t+λ~∫0tt-z-γe-λ~·(t-z)G(x,p,z)dz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t) =\frac{1}{\varGamma (1-\gamma )} \left[ \frac{\partial }{\partial t}+\widetilde{\lambda } \right] \int _{0}^t{\left( t-z\right) ^{-\gamma }}e^{-\widetilde{\lambda }\cdot (t-z)}{G(x,p,z)}dz, \end{aligned}$$\end{document}and λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, 0<γ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <1$$\end{document}, ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document}, and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is a real number. The designed schemes are unconditionally stable and have the global truncation error O(τ2+h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}(\tau ^2+h^2)$$\end{document}, being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
引用
收藏
页码:867 / 887
页数:20
相关论文
共 50 条
  • [31] High order schemes for the tempered fractional diffusion equations
    Can Li
    Weihua Deng
    Advances in Computational Mathematics, 2016, 42 : 543 - 572
  • [32] High-Order Chebyshev Pseudospectral Tempered Fractional Operational Matrices and Tempered Fractional Differential Problems
    El-Abed, Amel
    Dahy, Sayed A.
    El-Hawary, H. M.
    Aboelenen, Tarek
    Fahim, Alaa
    FRACTAL AND FRACTIONAL, 2023, 7 (11)
  • [33] EXISTENCE AND REGULARITY RESULTS FOR SEMILINEAR STOCHASTIC TIME-TEMPERED FRACTIONAL WAVE EQUATIONS WITH MULTIPLICATIVE GAUSSIAN NOISE AND ADDITIVE FRACTIONAL GAUSSIAN NOISE
    LI, Yajing
    Wang, Yejuan
    Deng, Weihua
    Nie, Daxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2686 - 2720
  • [34] An intelligent non-uniform mesh to improve errors of a stable numerical method for time-tempered fractional advection-diffusion equation with weakly singular solution
    Ahmadinia, Mahdi
    Abbasi, Mokhtar
    Hadi, Parisa
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (18): : 26280 - 26307
  • [35] Error Estimates for Backward Fractional Feynman-Kac Equation with Non-Smooth Initial Data
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [36] Fourth-order numerical method for the space time tempered fractional diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    Deng, Weihua
    APPLIED MATHEMATICS LETTERS, 2017, 73 : 120 - 127
  • [37] A highly efficient reduced-order extrapolated finite difference algorithm for time-space tempered fractional diffusion-wave equation
    Luo, Zhendong
    Wang, Hui
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [38] Subordination principle and Feynman-Kac formulae for generalized time-fractional evolution equations
    Bender, Christian
    Bormann, Marie
    Butko, Yana A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) : 1818 - 1836
  • [39] A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
    Wenhui Guan
    Xuenian Cao
    Communications on Applied Mathematics and Computation, 2021, 3 : 41 - 59
  • [40] A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
    Guan, Wenhui
    Cao, Xuenian
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (01) : 41 - 59