High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation

被引:0
|
作者
Minghua Chen
Weihua Deng
机构
[1] Lanzhou University,School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems
来源
Journal of Scientific Computing | 2018年 / 76卷
关键词
Time-tempered fractional Feynman–Kac equation; Tempered fractional substantial derivative; Stability and convergence; First passage time; 35R11; 65L20;
D O I
暂无
中图分类号
学科分类号
摘要
We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as SDtγ,λ~G(x,p,t)=Dtγ,λ~G(x,p,t)-λγG(x,p,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {^S\!}D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!=\!D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!-\!\lambda ^\gamma G(x,p,t) \end{aligned}$$\end{document}with λ~=λ+pU(x),p=ρ+Jη,J=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{\lambda }=\lambda + pU(x),\, p=\rho +J\eta ,\, J=\sqrt{-1}$$\end{document}, where Dtγ,λ~G(x,p,t)=1Γ(1-γ)∂∂t+λ~∫0tt-z-γe-λ~·(t-z)G(x,p,z)dz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t) =\frac{1}{\varGamma (1-\gamma )} \left[ \frac{\partial }{\partial t}+\widetilde{\lambda } \right] \int _{0}^t{\left( t-z\right) ^{-\gamma }}e^{-\widetilde{\lambda }\cdot (t-z)}{G(x,p,z)}dz, \end{aligned}$$\end{document}and λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge 0$$\end{document}, 0<γ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\gamma <1$$\end{document}, ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document}, and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is a real number. The designed schemes are unconditionally stable and have the global truncation error O(τ2+h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {O}(\tau ^2+h^2)$$\end{document}, being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).
引用
收藏
页码:867 / 887
页数:20
相关论文
共 50 条
  • [21] Analysis of a WSGD scheme for backward fractional Feynman-Kac equation with nonsmooth data
    Hao, Liyao
    Tian, Wenyi
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (04)
  • [22] AN ANALOGUE OF THE FEYNMAN-KAC FORMULA FOR A HIGH-ORDER OPERATOR
    Platonova, V. M.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (01) : 62 - 76
  • [23] A new ?walk on spheres? type method for fractional diffusion equation in high dimensions based on the Feynman-Kac formulas
    Su, Bihao
    Xu, Chenglong
    Sheng, Changtao
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [24] A Stable Finite Volume Method for Numerical Solution of Time-Tempered Fractional Sine-Gordon Equations
    Abbasi, M.
    Ahmadinia, M.
    Hadi, P.
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (03) : 637 - 647
  • [25] FEYNMAN PATH FORMULA FOR THE TIME FRACTIONAL SCHRODINGER EQUATION
    Emamirad, Hassan
    Rougirel, Arnaud
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (12): : 3391 - 3400
  • [26] Error Estimates for Backward Fractional Feynman–Kac Equation with Non-Smooth Initial Data
    Jing Sun
    Daxin Nie
    Weihua Deng
    Journal of Scientific Computing, 2020, 84
  • [27] Two L1 Schemes on Graded Meshes for Fractional Feynman-Kac Equation
    Chen, Minghua
    Jiang, Suzhen
    Bu, Weiping
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (03)
  • [28] Two L1 Schemes on Graded Meshes for Fractional Feynman-Kac Equation
    Minghua Chen
    Suzhen Jiang
    Weiping Bu
    Journal of Scientific Computing, 2021, 88
  • [29] Solution of space-time tempered fractional diffusion-wave equation using a high-order numerical method
    Saffarian, Marziyeh
    Mohebbi, Akbar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 423
  • [30] High order schemes for the tempered fractional diffusion equations
    Li, Can
    Deng, Weihua
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (03) : 543 - 572