A novel second-order numerical approximation for the Riemann–Liouville tempered fractional derivative, called the tempered fractional-compact difference formula is derived by using the tempered Grünwald difference operator and its asymptotic expansion. Using the relationship between Riemann–Liouville and the Caputo tempered fractional derivatives, then the constructed approximation formula is applied to deal with the time-Caputo-tempered partial differential equation in time, while the spatial Riesz derivative are discretized by the fourth-order compact numerical differential formulas. By using the energy method, it is proved that the proposed algorithm to be unconditionally stable and convergent with order Oτ2+h14+h24\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {O}}\left( \tau ^2+h_1^4+h_2^4\right) $$\end{document}, where τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau $$\end{document} is the temporal stepsize and h1,h2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$h_1,h_2$$\end{document} are the spatial stepsizes respectively. Finally, some numerical examples are performed to testify the effectiveness of the obtained algorithm.
机构:
Tarbiat Modares Univ, Fac Math Sci, Dept Appl Math, POB 14115-175, Tehran, IranTarbiat Modares Univ, Fac Math Sci, Dept Appl Math, POB 14115-175, Tehran, Iran
Sayyar, Golsa
论文数: 引用数:
h-index:
机构:
Hosseini, Seyed Mohammad
Mostajeran, Farinaz
论文数: 0引用数: 0
h-index: 0
机构:
Tarbiat Modares Univ, Fac Math Sci, Dept Appl Math, POB 14115-175, Tehran, IranTarbiat Modares Univ, Fac Math Sci, Dept Appl Math, POB 14115-175, Tehran, Iran
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Delft Univ Technol, Appl Math DIAM, Delft, NetherlandsXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Bu, Linlin
Oosterlee, Cornelis W.
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Appl Math DIAM, Delft, Netherlands
Univ Utrecht, Math Inst, Utrecht, NetherlandsXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
机构:
Shanghai Univ, Dept Math, Shanghai, Peoples R China
Shanghai Univ, Newtouch Ctr Math, Shanghai, Peoples R ChinaShanghai Univ, Dept Math, Shanghai, Peoples R China
Cai, Min
Li, Changpin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Dept Math, Shanghai, Peoples R China
Shanghai Univ, Newtouch Ctr Math, Shanghai, Peoples R China
Shanghai Univ, Dept Math, 99 Shangda Rd, Shanghai 200444, Peoples R ChinaShanghai Univ, Dept Math, Shanghai, Peoples R China
机构:
Czestochowa Tech Univ, Fac Mech Engn & Comp Sci, Armii Krajowej 21, PL-42201 Czestochowa, PolandCzestochowa Tech Univ, Fac Mech Engn & Comp Sci, Armii Krajowej 21, PL-42201 Czestochowa, Poland