Exceptional set for sums of unlike powers of primes (II)

被引:0
|
作者
Min Zhang
Jinjiang Li
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] China University of Mining and Technology,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Waring–Goldbach problem; Circle method; Exceptional set; 11P05; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a sufficiently large integer. In this paper, it is proved that, with at most O(N7/18+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^{7/18+\varepsilon })$$\end{document} exceptions, all even positive integers up to N can be represented in the form p12+p22+p33+p43+p54+p64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$$\end{document}, where p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document} are prime numbers, which constitutes an improvement over some previous work.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条
  • [31] Diophantine Inequality by Unlike Powers of Primes
    ZHU, Li
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (01) : 125 - 136
  • [32] Diophantine Inequality by Unlike Powers of Primes
    Li ZHU
    Chinese Annals of Mathematics,Series B, 2022, (01) : 125 - 136
  • [33] Diophantine Inequality by Unlike Powers of Primes
    Li Zhu
    Chinese Annals of Mathematics, Series B, 2022, 43 : 125 - 136
  • [34] On pairs of equations in unlike powers of primes and powers of 2
    Hu, Liqun
    Yang, Li
    OPEN MATHEMATICS, 2017, 15 : 1487 - 1494
  • [35] A pair of equations in unlike powers of primes and powers of 2
    Cai, Yong
    Hu, Liqun
    OPEN MATHEMATICS, 2020, 18 : 662 - 670
  • [36] SUMS OF PRIMES AND POWERS OF 2
    GALLAGHE.PX
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A602 - A603
  • [37] POWERS OF SUMS AND THEIR ASSOCIATED PRIMES
    Nguyen, Hop D.
    Quang Hoa Tran
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 316 (01) : 217 - 235
  • [38] EQUAL SUMS OF POWERS OF PRIMES
    FOSTER, LL
    AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (02): : 138 - 138
  • [39] Exceptional Set of Waring-Goldbach Problem with Unequal Powers of Primes
    Zhao, Xiaodong
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (04): : 817 - 824
  • [40] THE REPRESENTATION OF NUMBERS AS SUMS OF UNLIKE POWERS
    FORD, KB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 14 - 26