Diophantine Inequality by Unlike Powers of Primes

被引:0
|
作者
Li Zhu
机构
[1] Shanghai Lixin University of Accounting and Finance,School of Statistics and Mathematics
关键词
Prime; Davenport-Heilbronn method; Diophantine inequalities; 11P32; 11D75;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that λ1, ⋯ λ5 are nonzero real numbers, not all of the same sign, satisfying that λ1λ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\lambda _1}} \over {{\lambda _2}}}$$\end{document} is irrational. Then for any given real number η and ε > 0, the inequality |λ1p1+λ2p22+λ3p33+λ4p44+λ5p55+η|<(max1≤j≤5pjj)−19756+ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {{\lambda _1}{p_1} + {\lambda _2}p_2^2 + {\lambda _3}p_3^3 + {\lambda _4}p_4^4 + {\lambda _5}p_5^5 + \eta } \right| < {\left( {\mathop {\max }\limits_{1 \le j \le 5} p_j^j} \right)^{ - {{19} \over {756}} + \varepsilon }}$$\end{document}
引用
收藏
页码:125 / 136
页数:11
相关论文
共 50 条
  • [1] Diophantine inequality by unlike powers of primes
    Zhu, Li
    [J]. RAMANUJAN JOURNAL, 2020, 51 (02): : 307 - 318
  • [2] Diophantine Inequality by Unlike Powers of Primes
    ZHU, Li
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (01) : 125 - 136
  • [3] Diophantine Inequality by Unlike Powers of Primes
    Li ZHU
    [J]. Chinese Annals of Mathematics,Series B, 2022, (01) : 125 - 136
  • [4] Diophantine inequality by unlike powers of primes
    Li Zhu
    [J]. The Ramanujan Journal, 2020, 51 : 307 - 318
  • [5] On the exceptional set for Diophantine inequality with unlike powers of primes
    Liu, Huafeng
    Liu, Rui
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (01) : 34 - 52
  • [6] On the exceptional set for Diophantine inequality with unlike powers of primes
    Huafeng Liu
    Rui Liu
    [J]. Lithuanian Mathematical Journal, 2024, 64 : 34 - 52
  • [7] Diophantine approximation by unlike powers of primes
    Liu, Zhixin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (09) : 2445 - 2452
  • [8] A Diophantine Problem with Unlike Powers of Primes
    Mu, Quanwu
    Xi, Liyan
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [9] On Diophantine approximation by unlike powers of primes
    Ge, Wenxu
    Li, Weiping
    Wang, Tianze
    [J]. OPEN MATHEMATICS, 2019, 17 : 544 - 555
  • [10] Results of Diophantine approximation by unlike powers of primes
    Gaiyun Gao
    Zhixin Liu
    [J]. Frontiers of Mathematics in China, 2018, 13 : 797 - 808