Exceptional set for sums of unlike powers of primes (II)

被引:0
|
作者
Min Zhang
Jinjiang Li
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] China University of Mining and Technology,Department of Mathematics
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Waring–Goldbach problem; Circle method; Exceptional set; 11P05; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a sufficiently large integer. In this paper, it is proved that, with at most O(N7/18+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^{7/18+\varepsilon })$$\end{document} exceptions, all even positive integers up to N can be represented in the form p12+p22+p33+p43+p54+p64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4$$\end{document}, where p1,p2,p3,p4,p5,p6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3,p_4,p_5,p_6$$\end{document} are prime numbers, which constitutes an improvement over some previous work.
引用
收藏
页码:131 / 140
页数:9
相关论文
共 50 条
  • [41] On pairs of equations involving unlike powers of primes and powers of 2
    Liu, Yuhui
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (04) : 393 - 400
  • [42] Results of Diophantine approximation by unlike powers of primes
    Gaiyun Gao
    Zhixin Liu
    Frontiers of Mathematics in China, 2018, 13 : 797 - 808
  • [43] A note on Diophantine approximation by unlike powers of primes
    Mu, Quanwu
    Qu, Yunyun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) : 1651 - 1668
  • [44] Results of Diophantine approximation by unlike powers of primes
    Gao, Gaiyun
    Liu, Zhixin
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (04) : 797 - 808
  • [45] A Diophantine approximation problem with unlike powers of primes
    Li, Xinyan
    Ge, Wenxu
    AIMS MATHEMATICS, 2025, 10 (01): : 736 - 753
  • [46] Goldbach-Linnik Problem on Unlike Powers of Primes and Powers of Two
    Hu, Liqun
    Long, Xuan
    Wang, Huimin
    FRONTIERS OF MATHEMATICS, 2025,
  • [47] Sums of two unlike powers in arithmetic progressions
    Jörg Brüdern
    Robert C. Vaughan
    European Journal of Mathematics, 2022, 8 : 182 - 213
  • [49] On sums of powers of almost equal primes
    Kumchev, Angel
    Liu, Huafeng
    JOURNAL OF NUMBER THEORY, 2017, 176 : 344 - 364
  • [50] On sums of powers of almost equal primes
    Wei, Bin
    Wooley, Trevor D.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 1130 - 1162